Step |
Hyp |
Ref |
Expression |
1 |
|
supicc.1 |
|- ( ph -> B e. RR ) |
2 |
|
supicc.2 |
|- ( ph -> C e. RR ) |
3 |
|
supicc.3 |
|- ( ph -> A C_ ( B [,] C ) ) |
4 |
|
supicc.4 |
|- ( ph -> A =/= (/) ) |
5 |
|
supiccub.1 |
|- ( ph -> D e. A ) |
6 |
|
supicclub2.1 |
|- ( ( ph /\ z e. A ) -> z <_ D ) |
7 |
|
iccssxr |
|- ( B [,] C ) C_ RR* |
8 |
1 2 3 4
|
supicc |
|- ( ph -> sup ( A , RR , < ) e. ( B [,] C ) ) |
9 |
7 8
|
sselid |
|- ( ph -> sup ( A , RR , < ) e. RR* ) |
10 |
3 7
|
sstrdi |
|- ( ph -> A C_ RR* ) |
11 |
10 5
|
sseldd |
|- ( ph -> D e. RR* ) |
12 |
10
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. RR* ) |
13 |
11
|
adantr |
|- ( ( ph /\ z e. A ) -> D e. RR* ) |
14 |
12 13
|
xrlenltd |
|- ( ( ph /\ z e. A ) -> ( z <_ D <-> -. D < z ) ) |
15 |
6 14
|
mpbid |
|- ( ( ph /\ z e. A ) -> -. D < z ) |
16 |
15
|
nrexdv |
|- ( ph -> -. E. z e. A D < z ) |
17 |
1 2 3 4 5
|
supicclub |
|- ( ph -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |
18 |
16 17
|
mtbird |
|- ( ph -> -. D < sup ( A , RR , < ) ) |
19 |
9 11 18
|
xrnltled |
|- ( ph -> sup ( A , RR , < ) <_ D ) |