Metamath Proof Explorer


Theorem supiccub

Description: The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019)

Ref Expression
Hypotheses supicc.1
|- ( ph -> B e. RR )
supicc.2
|- ( ph -> C e. RR )
supicc.3
|- ( ph -> A C_ ( B [,] C ) )
supicc.4
|- ( ph -> A =/= (/) )
supiccub.1
|- ( ph -> D e. A )
Assertion supiccub
|- ( ph -> D <_ sup ( A , RR , < ) )

Proof

Step Hyp Ref Expression
1 supicc.1
 |-  ( ph -> B e. RR )
2 supicc.2
 |-  ( ph -> C e. RR )
3 supicc.3
 |-  ( ph -> A C_ ( B [,] C ) )
4 supicc.4
 |-  ( ph -> A =/= (/) )
5 supiccub.1
 |-  ( ph -> D e. A )
6 iccssre
 |-  ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR )
7 1 2 6 syl2anc
 |-  ( ph -> ( B [,] C ) C_ RR )
8 3 7 sstrd
 |-  ( ph -> A C_ RR )
9 1 adantr
 |-  ( ( ph /\ x e. A ) -> B e. RR )
10 9 rexrd
 |-  ( ( ph /\ x e. A ) -> B e. RR* )
11 2 adantr
 |-  ( ( ph /\ x e. A ) -> C e. RR )
12 11 rexrd
 |-  ( ( ph /\ x e. A ) -> C e. RR* )
13 3 sselda
 |-  ( ( ph /\ x e. A ) -> x e. ( B [,] C ) )
14 iccleub
 |-  ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C )
15 10 12 13 14 syl3anc
 |-  ( ( ph /\ x e. A ) -> x <_ C )
16 15 ralrimiva
 |-  ( ph -> A. x e. A x <_ C )
17 brralrspcev
 |-  ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y )
18 2 16 17 syl2anc
 |-  ( ph -> E. y e. RR A. x e. A x <_ y )
19 8 4 18 5 suprubd
 |-  ( ph -> D <_ sup ( A , RR , < ) )