Step |
Hyp |
Ref |
Expression |
1 |
|
supminfxr.1 |
|- ( ph -> A C_ RR ) |
2 |
|
supeq1 |
|- ( A = (/) -> sup ( A , RR* , < ) = sup ( (/) , RR* , < ) ) |
3 |
|
xrsup0 |
|- sup ( (/) , RR* , < ) = -oo |
4 |
3
|
a1i |
|- ( A = (/) -> sup ( (/) , RR* , < ) = -oo ) |
5 |
2 4
|
eqtrd |
|- ( A = (/) -> sup ( A , RR* , < ) = -oo ) |
6 |
5
|
adantl |
|- ( ( ph /\ A = (/) ) -> sup ( A , RR* , < ) = -oo ) |
7 |
|
eleq2 |
|- ( A = (/) -> ( -u x e. A <-> -u x e. (/) ) ) |
8 |
7
|
rabbidv |
|- ( A = (/) -> { x e. RR | -u x e. A } = { x e. RR | -u x e. (/) } ) |
9 |
|
noel |
|- -. -u x e. (/) |
10 |
9
|
a1i |
|- ( x e. RR -> -. -u x e. (/) ) |
11 |
10
|
rgen |
|- A. x e. RR -. -u x e. (/) |
12 |
|
rabeq0 |
|- ( { x e. RR | -u x e. (/) } = (/) <-> A. x e. RR -. -u x e. (/) ) |
13 |
11 12
|
mpbir |
|- { x e. RR | -u x e. (/) } = (/) |
14 |
13
|
a1i |
|- ( A = (/) -> { x e. RR | -u x e. (/) } = (/) ) |
15 |
8 14
|
eqtrd |
|- ( A = (/) -> { x e. RR | -u x e. A } = (/) ) |
16 |
15
|
infeq1d |
|- ( A = (/) -> inf ( { x e. RR | -u x e. A } , RR* , < ) = inf ( (/) , RR* , < ) ) |
17 |
|
xrinf0 |
|- inf ( (/) , RR* , < ) = +oo |
18 |
17
|
a1i |
|- ( A = (/) -> inf ( (/) , RR* , < ) = +oo ) |
19 |
16 18
|
eqtrd |
|- ( A = (/) -> inf ( { x e. RR | -u x e. A } , RR* , < ) = +oo ) |
20 |
19
|
xnegeqd |
|- ( A = (/) -> -e inf ( { x e. RR | -u x e. A } , RR* , < ) = -e +oo ) |
21 |
|
xnegpnf |
|- -e +oo = -oo |
22 |
21
|
a1i |
|- ( A = (/) -> -e +oo = -oo ) |
23 |
20 22
|
eqtrd |
|- ( A = (/) -> -e inf ( { x e. RR | -u x e. A } , RR* , < ) = -oo ) |
24 |
23
|
adantl |
|- ( ( ph /\ A = (/) ) -> -e inf ( { x e. RR | -u x e. A } , RR* , < ) = -oo ) |
25 |
6 24
|
eqtr4d |
|- ( ( ph /\ A = (/) ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
26 |
|
neqne |
|- ( -. A = (/) -> A =/= (/) ) |
27 |
1
|
ad2antrr |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> A C_ RR ) |
28 |
|
simplr |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> A =/= (/) ) |
29 |
|
simpr |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> E. y e. RR A. z e. A z <_ y ) |
30 |
|
negn0 |
|- ( ( A C_ RR /\ A =/= (/) ) -> { x e. RR | -u x e. A } =/= (/) ) |
31 |
|
ublbneg |
|- ( E. y e. RR A. z e. A z <_ y -> E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) |
32 |
|
ssrab2 |
|- { x e. RR | -u x e. A } C_ RR |
33 |
|
infrenegsup |
|- ( ( { x e. RR | -u x e. A } C_ RR /\ { x e. RR | -u x e. A } =/= (/) /\ E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) -> inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) ) |
34 |
32 33
|
mp3an1 |
|- ( ( { x e. RR | -u x e. A } =/= (/) /\ E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) -> inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) ) |
35 |
30 31 34
|
syl2an |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) ) |
36 |
35
|
3impa |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) ) |
37 |
|
elrabi |
|- ( y e. { w e. RR | -u w e. { x e. RR | -u x e. A } } -> y e. RR ) |
38 |
37
|
adantl |
|- ( ( A C_ RR /\ y e. { w e. RR | -u w e. { x e. RR | -u x e. A } } ) -> y e. RR ) |
39 |
|
ssel2 |
|- ( ( A C_ RR /\ y e. A ) -> y e. RR ) |
40 |
|
negeq |
|- ( w = y -> -u w = -u y ) |
41 |
40
|
eleq1d |
|- ( w = y -> ( -u w e. { x e. RR | -u x e. A } <-> -u y e. { x e. RR | -u x e. A } ) ) |
42 |
41
|
elrab3 |
|- ( y e. RR -> ( y e. { w e. RR | -u w e. { x e. RR | -u x e. A } } <-> -u y e. { x e. RR | -u x e. A } ) ) |
43 |
|
renegcl |
|- ( y e. RR -> -u y e. RR ) |
44 |
|
negeq |
|- ( x = -u y -> -u x = -u -u y ) |
45 |
44
|
eleq1d |
|- ( x = -u y -> ( -u x e. A <-> -u -u y e. A ) ) |
46 |
45
|
elrab3 |
|- ( -u y e. RR -> ( -u y e. { x e. RR | -u x e. A } <-> -u -u y e. A ) ) |
47 |
43 46
|
syl |
|- ( y e. RR -> ( -u y e. { x e. RR | -u x e. A } <-> -u -u y e. A ) ) |
48 |
|
recn |
|- ( y e. RR -> y e. CC ) |
49 |
48
|
negnegd |
|- ( y e. RR -> -u -u y = y ) |
50 |
49
|
eleq1d |
|- ( y e. RR -> ( -u -u y e. A <-> y e. A ) ) |
51 |
42 47 50
|
3bitrd |
|- ( y e. RR -> ( y e. { w e. RR | -u w e. { x e. RR | -u x e. A } } <-> y e. A ) ) |
52 |
51
|
adantl |
|- ( ( A C_ RR /\ y e. RR ) -> ( y e. { w e. RR | -u w e. { x e. RR | -u x e. A } } <-> y e. A ) ) |
53 |
38 39 52
|
eqrdav |
|- ( A C_ RR -> { w e. RR | -u w e. { x e. RR | -u x e. A } } = A ) |
54 |
53
|
supeq1d |
|- ( A C_ RR -> sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) = sup ( A , RR , < ) ) |
55 |
54
|
3ad2ant1 |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) = sup ( A , RR , < ) ) |
56 |
55
|
negeqd |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> -u sup ( { w e. RR | -u w e. { x e. RR | -u x e. A } } , RR , < ) = -u sup ( A , RR , < ) ) |
57 |
36 56
|
eqtrd |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( A , RR , < ) ) |
58 |
|
infrecl |
|- ( ( { x e. RR | -u x e. A } C_ RR /\ { x e. RR | -u x e. A } =/= (/) /\ E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) -> inf ( { x e. RR | -u x e. A } , RR , < ) e. RR ) |
59 |
32 58
|
mp3an1 |
|- ( ( { x e. RR | -u x e. A } =/= (/) /\ E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) -> inf ( { x e. RR | -u x e. A } , RR , < ) e. RR ) |
60 |
30 31 59
|
syl2an |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR , < ) e. RR ) |
61 |
60
|
3impa |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR , < ) e. RR ) |
62 |
|
suprcl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR , < ) e. RR ) |
63 |
|
recn |
|- ( inf ( { x e. RR | -u x e. A } , RR , < ) e. RR -> inf ( { x e. RR | -u x e. A } , RR , < ) e. CC ) |
64 |
|
recn |
|- ( sup ( A , RR , < ) e. RR -> sup ( A , RR , < ) e. CC ) |
65 |
|
negcon2 |
|- ( ( inf ( { x e. RR | -u x e. A } , RR , < ) e. CC /\ sup ( A , RR , < ) e. CC ) -> ( inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( A , RR , < ) <-> sup ( A , RR , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) ) |
66 |
63 64 65
|
syl2an |
|- ( ( inf ( { x e. RR | -u x e. A } , RR , < ) e. RR /\ sup ( A , RR , < ) e. RR ) -> ( inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( A , RR , < ) <-> sup ( A , RR , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) ) |
67 |
61 62 66
|
syl2anc |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> ( inf ( { x e. RR | -u x e. A } , RR , < ) = -u sup ( A , RR , < ) <-> sup ( A , RR , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) ) |
68 |
57 67
|
mpbid |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) |
69 |
27 28 29 68
|
syl3anc |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) |
70 |
|
supxrre |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR* , < ) = sup ( A , RR , < ) ) |
71 |
27 28 29 70
|
syl3anc |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR* , < ) = sup ( A , RR , < ) ) |
72 |
32
|
a1i |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> { x e. RR | -u x e. A } C_ RR ) |
73 |
27 28 30
|
syl2anc |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> { x e. RR | -u x e. A } =/= (/) ) |
74 |
29 31
|
syl |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) |
75 |
|
infxrre |
|- ( ( { x e. RR | -u x e. A } C_ RR /\ { x e. RR | -u x e. A } =/= (/) /\ E. y e. RR A. z e. { x e. RR | -u x e. A } y <_ z ) -> inf ( { x e. RR | -u x e. A } , RR* , < ) = inf ( { x e. RR | -u x e. A } , RR , < ) ) |
76 |
72 73 74 75
|
syl3anc |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR* , < ) = inf ( { x e. RR | -u x e. A } , RR , < ) ) |
77 |
76
|
xnegeqd |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> -e inf ( { x e. RR | -u x e. A } , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR , < ) ) |
78 |
1 60
|
sylanl1 |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> inf ( { x e. RR | -u x e. A } , RR , < ) e. RR ) |
79 |
78
|
rexnegd |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> -e inf ( { x e. RR | -u x e. A } , RR , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) |
80 |
77 79
|
eqtrd |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> -e inf ( { x e. RR | -u x e. A } , RR* , < ) = -u inf ( { x e. RR | -u x e. A } , RR , < ) ) |
81 |
69 71 80
|
3eqtr4d |
|- ( ( ( ph /\ A =/= (/) ) /\ E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
82 |
|
simpr |
|- ( ( ph /\ -. E. y e. RR A. z e. A z <_ y ) -> -. E. y e. RR A. z e. A z <_ y ) |
83 |
|
simplr |
|- ( ( ( ph /\ y e. RR ) /\ z e. A ) -> y e. RR ) |
84 |
1
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. RR ) |
85 |
84
|
adantlr |
|- ( ( ( ph /\ y e. RR ) /\ z e. A ) -> z e. RR ) |
86 |
83 85
|
ltnled |
|- ( ( ( ph /\ y e. RR ) /\ z e. A ) -> ( y < z <-> -. z <_ y ) ) |
87 |
86
|
rexbidva |
|- ( ( ph /\ y e. RR ) -> ( E. z e. A y < z <-> E. z e. A -. z <_ y ) ) |
88 |
|
rexnal |
|- ( E. z e. A -. z <_ y <-> -. A. z e. A z <_ y ) |
89 |
88
|
a1i |
|- ( ( ph /\ y e. RR ) -> ( E. z e. A -. z <_ y <-> -. A. z e. A z <_ y ) ) |
90 |
87 89
|
bitrd |
|- ( ( ph /\ y e. RR ) -> ( E. z e. A y < z <-> -. A. z e. A z <_ y ) ) |
91 |
90
|
ralbidva |
|- ( ph -> ( A. y e. RR E. z e. A y < z <-> A. y e. RR -. A. z e. A z <_ y ) ) |
92 |
|
ralnex |
|- ( A. y e. RR -. A. z e. A z <_ y <-> -. E. y e. RR A. z e. A z <_ y ) |
93 |
92
|
a1i |
|- ( ph -> ( A. y e. RR -. A. z e. A z <_ y <-> -. E. y e. RR A. z e. A z <_ y ) ) |
94 |
91 93
|
bitrd |
|- ( ph -> ( A. y e. RR E. z e. A y < z <-> -. E. y e. RR A. z e. A z <_ y ) ) |
95 |
94
|
adantr |
|- ( ( ph /\ -. E. y e. RR A. z e. A z <_ y ) -> ( A. y e. RR E. z e. A y < z <-> -. E. y e. RR A. z e. A z <_ y ) ) |
96 |
82 95
|
mpbird |
|- ( ( ph /\ -. E. y e. RR A. z e. A z <_ y ) -> A. y e. RR E. z e. A y < z ) |
97 |
|
xnegmnf |
|- -e -oo = +oo |
98 |
97
|
eqcomi |
|- +oo = -e -oo |
99 |
98
|
a1i |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> +oo = -e -oo ) |
100 |
|
simpr |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> A. y e. RR E. z e. A y < z ) |
101 |
|
ressxr |
|- RR C_ RR* |
102 |
101
|
a1i |
|- ( ph -> RR C_ RR* ) |
103 |
1 102
|
sstrd |
|- ( ph -> A C_ RR* ) |
104 |
|
supxrunb2 |
|- ( A C_ RR* -> ( A. y e. RR E. z e. A y < z <-> sup ( A , RR* , < ) = +oo ) ) |
105 |
103 104
|
syl |
|- ( ph -> ( A. y e. RR E. z e. A y < z <-> sup ( A , RR* , < ) = +oo ) ) |
106 |
105
|
adantr |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> ( A. y e. RR E. z e. A y < z <-> sup ( A , RR* , < ) = +oo ) ) |
107 |
100 106
|
mpbid |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> sup ( A , RR* , < ) = +oo ) |
108 |
|
renegcl |
|- ( v e. RR -> -u v e. RR ) |
109 |
108
|
adantl |
|- ( ( A. y e. RR E. z e. A y < z /\ v e. RR ) -> -u v e. RR ) |
110 |
|
simpl |
|- ( ( A. y e. RR E. z e. A y < z /\ v e. RR ) -> A. y e. RR E. z e. A y < z ) |
111 |
|
breq1 |
|- ( y = -u v -> ( y < z <-> -u v < z ) ) |
112 |
111
|
rexbidv |
|- ( y = -u v -> ( E. z e. A y < z <-> E. z e. A -u v < z ) ) |
113 |
112
|
rspcva |
|- ( ( -u v e. RR /\ A. y e. RR E. z e. A y < z ) -> E. z e. A -u v < z ) |
114 |
109 110 113
|
syl2anc |
|- ( ( A. y e. RR E. z e. A y < z /\ v e. RR ) -> E. z e. A -u v < z ) |
115 |
114
|
adantll |
|- ( ( ( ph /\ A. y e. RR E. z e. A y < z ) /\ v e. RR ) -> E. z e. A -u v < z ) |
116 |
|
negeq |
|- ( x = -u z -> -u x = -u -u z ) |
117 |
116
|
eleq1d |
|- ( x = -u z -> ( -u x e. A <-> -u -u z e. A ) ) |
118 |
84
|
renegcld |
|- ( ( ph /\ z e. A ) -> -u z e. RR ) |
119 |
118
|
ad4ant13 |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u z e. RR ) |
120 |
84
|
recnd |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
121 |
120
|
negnegd |
|- ( ( ph /\ z e. A ) -> -u -u z = z ) |
122 |
|
simpr |
|- ( ( ph /\ z e. A ) -> z e. A ) |
123 |
121 122
|
eqeltrd |
|- ( ( ph /\ z e. A ) -> -u -u z e. A ) |
124 |
123
|
ad4ant13 |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u -u z e. A ) |
125 |
117 119 124
|
elrabd |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u z e. { x e. RR | -u x e. A } ) |
126 |
|
simpr |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u v < z ) |
127 |
108
|
ad3antlr |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u v e. RR ) |
128 |
84
|
ad4ant13 |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> z e. RR ) |
129 |
127 128
|
ltnegd |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> ( -u v < z <-> -u z < -u -u v ) ) |
130 |
126 129
|
mpbid |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u z < -u -u v ) |
131 |
|
simpllr |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> v e. RR ) |
132 |
|
recn |
|- ( v e. RR -> v e. CC ) |
133 |
|
negneg |
|- ( v e. CC -> -u -u v = v ) |
134 |
131 132 133
|
3syl |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u -u v = v ) |
135 |
130 134
|
breqtrd |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> -u z < v ) |
136 |
|
breq1 |
|- ( w = -u z -> ( w < v <-> -u z < v ) ) |
137 |
136
|
rspcev |
|- ( ( -u z e. { x e. RR | -u x e. A } /\ -u z < v ) -> E. w e. { x e. RR | -u x e. A } w < v ) |
138 |
125 135 137
|
syl2anc |
|- ( ( ( ( ph /\ v e. RR ) /\ z e. A ) /\ -u v < z ) -> E. w e. { x e. RR | -u x e. A } w < v ) |
139 |
138
|
rexlimdva2 |
|- ( ( ph /\ v e. RR ) -> ( E. z e. A -u v < z -> E. w e. { x e. RR | -u x e. A } w < v ) ) |
140 |
139
|
adantlr |
|- ( ( ( ph /\ A. y e. RR E. z e. A y < z ) /\ v e. RR ) -> ( E. z e. A -u v < z -> E. w e. { x e. RR | -u x e. A } w < v ) ) |
141 |
115 140
|
mpd |
|- ( ( ( ph /\ A. y e. RR E. z e. A y < z ) /\ v e. RR ) -> E. w e. { x e. RR | -u x e. A } w < v ) |
142 |
141
|
ralrimiva |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> A. v e. RR E. w e. { x e. RR | -u x e. A } w < v ) |
143 |
32 101
|
sstri |
|- { x e. RR | -u x e. A } C_ RR* |
144 |
|
infxrunb2 |
|- ( { x e. RR | -u x e. A } C_ RR* -> ( A. v e. RR E. w e. { x e. RR | -u x e. A } w < v <-> inf ( { x e. RR | -u x e. A } , RR* , < ) = -oo ) ) |
145 |
143 144
|
ax-mp |
|- ( A. v e. RR E. w e. { x e. RR | -u x e. A } w < v <-> inf ( { x e. RR | -u x e. A } , RR* , < ) = -oo ) |
146 |
142 145
|
sylib |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> inf ( { x e. RR | -u x e. A } , RR* , < ) = -oo ) |
147 |
146
|
xnegeqd |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> -e inf ( { x e. RR | -u x e. A } , RR* , < ) = -e -oo ) |
148 |
99 107 147
|
3eqtr4d |
|- ( ( ph /\ A. y e. RR E. z e. A y < z ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
149 |
96 148
|
syldan |
|- ( ( ph /\ -. E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
150 |
149
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ -. E. y e. RR A. z e. A z <_ y ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
151 |
81 150
|
pm2.61dan |
|- ( ( ph /\ A =/= (/) ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
152 |
26 151
|
sylan2 |
|- ( ( ph /\ -. A = (/) ) -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |
153 |
25 152
|
pm2.61dan |
|- ( ph -> sup ( A , RR* , < ) = -e inf ( { x e. RR | -u x e. A } , RR* , < ) ) |