Step |
Hyp |
Ref |
Expression |
1 |
|
supminfxrrnmpt.x |
|- F/ x ph |
2 |
|
supminfxrrnmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
3 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
4 |
1 3 2
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR* ) |
5 |
4
|
supminfxr2 |
|- ( ph -> sup ( ran ( x e. A |-> B ) , RR* , < ) = -e inf ( { y e. RR* | -e y e. ran ( x e. A |-> B ) } , RR* , < ) ) |
6 |
|
xnegex |
|- -e y e. _V |
7 |
3
|
elrnmpt |
|- ( -e y e. _V -> ( -e y e. ran ( x e. A |-> B ) <-> E. x e. A -e y = B ) ) |
8 |
6 7
|
ax-mp |
|- ( -e y e. ran ( x e. A |-> B ) <-> E. x e. A -e y = B ) |
9 |
8
|
biimpi |
|- ( -e y e. ran ( x e. A |-> B ) -> E. x e. A -e y = B ) |
10 |
|
eqid |
|- ( x e. A |-> -e B ) = ( x e. A |-> -e B ) |
11 |
|
xnegneg |
|- ( y e. RR* -> -e -e y = y ) |
12 |
11
|
eqcomd |
|- ( y e. RR* -> y = -e -e y ) |
13 |
12
|
adantr |
|- ( ( y e. RR* /\ -e y = B ) -> y = -e -e y ) |
14 |
|
xnegeq |
|- ( -e y = B -> -e -e y = -e B ) |
15 |
14
|
adantl |
|- ( ( y e. RR* /\ -e y = B ) -> -e -e y = -e B ) |
16 |
13 15
|
eqtrd |
|- ( ( y e. RR* /\ -e y = B ) -> y = -e B ) |
17 |
16
|
ex |
|- ( y e. RR* -> ( -e y = B -> y = -e B ) ) |
18 |
17
|
reximdv |
|- ( y e. RR* -> ( E. x e. A -e y = B -> E. x e. A y = -e B ) ) |
19 |
18
|
imp |
|- ( ( y e. RR* /\ E. x e. A -e y = B ) -> E. x e. A y = -e B ) |
20 |
|
simpl |
|- ( ( y e. RR* /\ E. x e. A -e y = B ) -> y e. RR* ) |
21 |
10 19 20
|
elrnmptd |
|- ( ( y e. RR* /\ E. x e. A -e y = B ) -> y e. ran ( x e. A |-> -e B ) ) |
22 |
9 21
|
sylan2 |
|- ( ( y e. RR* /\ -e y e. ran ( x e. A |-> B ) ) -> y e. ran ( x e. A |-> -e B ) ) |
23 |
22
|
ex |
|- ( y e. RR* -> ( -e y e. ran ( x e. A |-> B ) -> y e. ran ( x e. A |-> -e B ) ) ) |
24 |
23
|
rgen |
|- A. y e. RR* ( -e y e. ran ( x e. A |-> B ) -> y e. ran ( x e. A |-> -e B ) ) |
25 |
|
rabss |
|- ( { y e. RR* | -e y e. ran ( x e. A |-> B ) } C_ ran ( x e. A |-> -e B ) <-> A. y e. RR* ( -e y e. ran ( x e. A |-> B ) -> y e. ran ( x e. A |-> -e B ) ) ) |
26 |
25
|
biimpri |
|- ( A. y e. RR* ( -e y e. ran ( x e. A |-> B ) -> y e. ran ( x e. A |-> -e B ) ) -> { y e. RR* | -e y e. ran ( x e. A |-> B ) } C_ ran ( x e. A |-> -e B ) ) |
27 |
24 26
|
ax-mp |
|- { y e. RR* | -e y e. ran ( x e. A |-> B ) } C_ ran ( x e. A |-> -e B ) |
28 |
27
|
a1i |
|- ( ph -> { y e. RR* | -e y e. ran ( x e. A |-> B ) } C_ ran ( x e. A |-> -e B ) ) |
29 |
|
nfcv |
|- F/_ x -e y |
30 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
31 |
30
|
nfrn |
|- F/_ x ran ( x e. A |-> B ) |
32 |
29 31
|
nfel |
|- F/ x -e y e. ran ( x e. A |-> B ) |
33 |
|
nfcv |
|- F/_ x RR* |
34 |
32 33
|
nfrabw |
|- F/_ x { y e. RR* | -e y e. ran ( x e. A |-> B ) } |
35 |
|
xnegeq |
|- ( y = -e B -> -e y = -e -e B ) |
36 |
35
|
eleq1d |
|- ( y = -e B -> ( -e y e. ran ( x e. A |-> B ) <-> -e -e B e. ran ( x e. A |-> B ) ) ) |
37 |
2
|
xnegcld |
|- ( ( ph /\ x e. A ) -> -e B e. RR* ) |
38 |
|
xnegneg |
|- ( B e. RR* -> -e -e B = B ) |
39 |
2 38
|
syl |
|- ( ( ph /\ x e. A ) -> -e -e B = B ) |
40 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
41 |
3 40 2
|
elrnmpt1d |
|- ( ( ph /\ x e. A ) -> B e. ran ( x e. A |-> B ) ) |
42 |
39 41
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> -e -e B e. ran ( x e. A |-> B ) ) |
43 |
36 37 42
|
elrabd |
|- ( ( ph /\ x e. A ) -> -e B e. { y e. RR* | -e y e. ran ( x e. A |-> B ) } ) |
44 |
1 34 10 43
|
rnmptssdf |
|- ( ph -> ran ( x e. A |-> -e B ) C_ { y e. RR* | -e y e. ran ( x e. A |-> B ) } ) |
45 |
28 44
|
eqssd |
|- ( ph -> { y e. RR* | -e y e. ran ( x e. A |-> B ) } = ran ( x e. A |-> -e B ) ) |
46 |
45
|
infeq1d |
|- ( ph -> inf ( { y e. RR* | -e y e. ran ( x e. A |-> B ) } , RR* , < ) = inf ( ran ( x e. A |-> -e B ) , RR* , < ) ) |
47 |
46
|
xnegeqd |
|- ( ph -> -e inf ( { y e. RR* | -e y e. ran ( x e. A |-> B ) } , RR* , < ) = -e inf ( ran ( x e. A |-> -e B ) , RR* , < ) ) |
48 |
5 47
|
eqtrd |
|- ( ph -> sup ( ran ( x e. A |-> B ) , RR* , < ) = -e inf ( ran ( x e. A |-> -e B ) , RR* , < ) ) |