| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supmul.1 |
|- C = { z | E. v e. A E. b e. B z = ( v x. b ) } |
| 2 |
|
supmul.2 |
|- ( ph <-> ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
| 3 |
2
|
simp2bi |
|- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 4 |
|
suprcl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
| 5 |
3 4
|
syl |
|- ( ph -> sup ( A , RR , < ) e. RR ) |
| 6 |
2
|
simp3bi |
|- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 7 |
|
suprcl |
|- ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) -> sup ( B , RR , < ) e. RR ) |
| 8 |
6 7
|
syl |
|- ( ph -> sup ( B , RR , < ) e. RR ) |
| 9 |
|
recn |
|- ( sup ( A , RR , < ) e. RR -> sup ( A , RR , < ) e. CC ) |
| 10 |
|
recn |
|- ( sup ( B , RR , < ) e. RR -> sup ( B , RR , < ) e. CC ) |
| 11 |
|
mulcom |
|- ( ( sup ( A , RR , < ) e. CC /\ sup ( B , RR , < ) e. CC ) -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) ) |
| 12 |
9 10 11
|
syl2an |
|- ( ( sup ( A , RR , < ) e. RR /\ sup ( B , RR , < ) e. RR ) -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) ) |
| 13 |
5 8 12
|
syl2anc |
|- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) ) |
| 14 |
6
|
simp2d |
|- ( ph -> B =/= (/) ) |
| 15 |
|
n0 |
|- ( B =/= (/) <-> E. b b e. B ) |
| 16 |
14 15
|
sylib |
|- ( ph -> E. b b e. B ) |
| 17 |
|
0red |
|- ( ( ph /\ b e. B ) -> 0 e. RR ) |
| 18 |
6
|
simp1d |
|- ( ph -> B C_ RR ) |
| 19 |
18
|
sselda |
|- ( ( ph /\ b e. B ) -> b e. RR ) |
| 20 |
8
|
adantr |
|- ( ( ph /\ b e. B ) -> sup ( B , RR , < ) e. RR ) |
| 21 |
|
simp1r |
|- ( ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> A. x e. B 0 <_ x ) |
| 22 |
2 21
|
sylbi |
|- ( ph -> A. x e. B 0 <_ x ) |
| 23 |
|
breq2 |
|- ( x = b -> ( 0 <_ x <-> 0 <_ b ) ) |
| 24 |
23
|
rspccv |
|- ( A. x e. B 0 <_ x -> ( b e. B -> 0 <_ b ) ) |
| 25 |
22 24
|
syl |
|- ( ph -> ( b e. B -> 0 <_ b ) ) |
| 26 |
25
|
imp |
|- ( ( ph /\ b e. B ) -> 0 <_ b ) |
| 27 |
|
suprub |
|- ( ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 28 |
6 27
|
sylan |
|- ( ( ph /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 29 |
17 19 20 26 28
|
letrd |
|- ( ( ph /\ b e. B ) -> 0 <_ sup ( B , RR , < ) ) |
| 30 |
16 29
|
exlimddv |
|- ( ph -> 0 <_ sup ( B , RR , < ) ) |
| 31 |
|
simp1l |
|- ( ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> A. x e. A 0 <_ x ) |
| 32 |
2 31
|
sylbi |
|- ( ph -> A. x e. A 0 <_ x ) |
| 33 |
|
eqid |
|- { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } = { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } |
| 34 |
|
biid |
|- ( ( ( sup ( B , RR , < ) e. RR /\ 0 <_ sup ( B , RR , < ) /\ A. x e. A 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) <-> ( ( sup ( B , RR , < ) e. RR /\ 0 <_ sup ( B , RR , < ) /\ A. x e. A 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) ) |
| 35 |
33 34
|
supmul1 |
|- ( ( ( sup ( B , RR , < ) e. RR /\ 0 <_ sup ( B , RR , < ) /\ A. x e. A 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) -> ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) ) |
| 36 |
8 30 32 3 35
|
syl31anc |
|- ( ph -> ( sup ( B , RR , < ) x. sup ( A , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) ) |
| 37 |
13 36
|
eqtrd |
|- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) ) |
| 38 |
|
vex |
|- w e. _V |
| 39 |
|
eqeq1 |
|- ( z = w -> ( z = ( sup ( B , RR , < ) x. a ) <-> w = ( sup ( B , RR , < ) x. a ) ) ) |
| 40 |
39
|
rexbidv |
|- ( z = w -> ( E. a e. A z = ( sup ( B , RR , < ) x. a ) <-> E. a e. A w = ( sup ( B , RR , < ) x. a ) ) ) |
| 41 |
38 40
|
elab |
|- ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } <-> E. a e. A w = ( sup ( B , RR , < ) x. a ) ) |
| 42 |
8
|
adantr |
|- ( ( ph /\ a e. A ) -> sup ( B , RR , < ) e. RR ) |
| 43 |
3
|
simp1d |
|- ( ph -> A C_ RR ) |
| 44 |
43
|
sselda |
|- ( ( ph /\ a e. A ) -> a e. RR ) |
| 45 |
|
recn |
|- ( a e. RR -> a e. CC ) |
| 46 |
|
mulcom |
|- ( ( sup ( B , RR , < ) e. CC /\ a e. CC ) -> ( sup ( B , RR , < ) x. a ) = ( a x. sup ( B , RR , < ) ) ) |
| 47 |
10 45 46
|
syl2an |
|- ( ( sup ( B , RR , < ) e. RR /\ a e. RR ) -> ( sup ( B , RR , < ) x. a ) = ( a x. sup ( B , RR , < ) ) ) |
| 48 |
42 44 47
|
syl2anc |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) x. a ) = ( a x. sup ( B , RR , < ) ) ) |
| 49 |
|
breq2 |
|- ( x = a -> ( 0 <_ x <-> 0 <_ a ) ) |
| 50 |
49
|
rspccv |
|- ( A. x e. A 0 <_ x -> ( a e. A -> 0 <_ a ) ) |
| 51 |
32 50
|
syl |
|- ( ph -> ( a e. A -> 0 <_ a ) ) |
| 52 |
51
|
imp |
|- ( ( ph /\ a e. A ) -> 0 <_ a ) |
| 53 |
22
|
adantr |
|- ( ( ph /\ a e. A ) -> A. x e. B 0 <_ x ) |
| 54 |
6
|
adantr |
|- ( ( ph /\ a e. A ) -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 55 |
|
eqid |
|- { z | E. b e. B z = ( a x. b ) } = { z | E. b e. B z = ( a x. b ) } |
| 56 |
|
biid |
|- ( ( ( a e. RR /\ 0 <_ a /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) <-> ( ( a e. RR /\ 0 <_ a /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
| 57 |
55 56
|
supmul1 |
|- ( ( ( a e. RR /\ 0 <_ a /\ A. x e. B 0 <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) -> ( a x. sup ( B , RR , < ) ) = sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) ) |
| 58 |
44 52 53 54 57
|
syl31anc |
|- ( ( ph /\ a e. A ) -> ( a x. sup ( B , RR , < ) ) = sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) ) |
| 59 |
|
eqeq1 |
|- ( z = w -> ( z = ( a x. b ) <-> w = ( a x. b ) ) ) |
| 60 |
59
|
rexbidv |
|- ( z = w -> ( E. b e. B z = ( a x. b ) <-> E. b e. B w = ( a x. b ) ) ) |
| 61 |
38 60
|
elab |
|- ( w e. { z | E. b e. B z = ( a x. b ) } <-> E. b e. B w = ( a x. b ) ) |
| 62 |
|
rspe |
|- ( ( a e. A /\ E. b e. B w = ( a x. b ) ) -> E. a e. A E. b e. B w = ( a x. b ) ) |
| 63 |
|
oveq1 |
|- ( v = a -> ( v x. b ) = ( a x. b ) ) |
| 64 |
63
|
eqeq2d |
|- ( v = a -> ( z = ( v x. b ) <-> z = ( a x. b ) ) ) |
| 65 |
64
|
rexbidv |
|- ( v = a -> ( E. b e. B z = ( v x. b ) <-> E. b e. B z = ( a x. b ) ) ) |
| 66 |
65
|
cbvrexvw |
|- ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B z = ( a x. b ) ) |
| 67 |
59
|
2rexbidv |
|- ( z = w -> ( E. a e. A E. b e. B z = ( a x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
| 68 |
66 67
|
bitrid |
|- ( z = w -> ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
| 69 |
38 68 1
|
elab2 |
|- ( w e. C <-> E. a e. A E. b e. B w = ( a x. b ) ) |
| 70 |
62 69
|
sylibr |
|- ( ( a e. A /\ E. b e. B w = ( a x. b ) ) -> w e. C ) |
| 71 |
70
|
ex |
|- ( a e. A -> ( E. b e. B w = ( a x. b ) -> w e. C ) ) |
| 72 |
1 2
|
supmullem2 |
|- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |
| 73 |
|
suprub |
|- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 74 |
73
|
ex |
|- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 75 |
72 74
|
syl |
|- ( ph -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 76 |
71 75
|
sylan9r |
|- ( ( ph /\ a e. A ) -> ( E. b e. B w = ( a x. b ) -> w <_ sup ( C , RR , < ) ) ) |
| 77 |
61 76
|
biimtrid |
|- ( ( ph /\ a e. A ) -> ( w e. { z | E. b e. B z = ( a x. b ) } -> w <_ sup ( C , RR , < ) ) ) |
| 78 |
77
|
ralrimiv |
|- ( ( ph /\ a e. A ) -> A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) |
| 79 |
44
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> a e. RR ) |
| 80 |
19
|
adantlr |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> b e. RR ) |
| 81 |
79 80
|
remulcld |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a x. b ) e. RR ) |
| 82 |
|
eleq1a |
|- ( ( a x. b ) e. RR -> ( z = ( a x. b ) -> z e. RR ) ) |
| 83 |
81 82
|
syl |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( z = ( a x. b ) -> z e. RR ) ) |
| 84 |
83
|
rexlimdva |
|- ( ( ph /\ a e. A ) -> ( E. b e. B z = ( a x. b ) -> z e. RR ) ) |
| 85 |
84
|
abssdv |
|- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a x. b ) } C_ RR ) |
| 86 |
|
ovex |
|- ( a x. b ) e. _V |
| 87 |
86
|
isseti |
|- E. w w = ( a x. b ) |
| 88 |
87
|
rgenw |
|- A. b e. B E. w w = ( a x. b ) |
| 89 |
|
r19.2z |
|- ( ( B =/= (/) /\ A. b e. B E. w w = ( a x. b ) ) -> E. b e. B E. w w = ( a x. b ) ) |
| 90 |
14 88 89
|
sylancl |
|- ( ph -> E. b e. B E. w w = ( a x. b ) ) |
| 91 |
|
rexcom4 |
|- ( E. b e. B E. w w = ( a x. b ) <-> E. w E. b e. B w = ( a x. b ) ) |
| 92 |
90 91
|
sylib |
|- ( ph -> E. w E. b e. B w = ( a x. b ) ) |
| 93 |
60
|
cbvexvw |
|- ( E. z E. b e. B z = ( a x. b ) <-> E. w E. b e. B w = ( a x. b ) ) |
| 94 |
92 93
|
sylibr |
|- ( ph -> E. z E. b e. B z = ( a x. b ) ) |
| 95 |
|
abn0 |
|- ( { z | E. b e. B z = ( a x. b ) } =/= (/) <-> E. z E. b e. B z = ( a x. b ) ) |
| 96 |
94 95
|
sylibr |
|- ( ph -> { z | E. b e. B z = ( a x. b ) } =/= (/) ) |
| 97 |
96
|
adantr |
|- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a x. b ) } =/= (/) ) |
| 98 |
|
suprcl |
|- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> sup ( C , RR , < ) e. RR ) |
| 99 |
72 98
|
syl |
|- ( ph -> sup ( C , RR , < ) e. RR ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ a e. A ) -> sup ( C , RR , < ) e. RR ) |
| 101 |
|
brralrspcev |
|- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a x. b ) } w <_ x ) |
| 102 |
100 78 101
|
syl2anc |
|- ( ( ph /\ a e. A ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a x. b ) } w <_ x ) |
| 103 |
|
suprleub |
|- ( ( ( { z | E. b e. B z = ( a x. b ) } C_ RR /\ { z | E. b e. B z = ( a x. b ) } =/= (/) /\ E. x e. RR A. w e. { z | E. b e. B z = ( a x. b ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) ) |
| 104 |
85 97 102 100 103
|
syl31anc |
|- ( ( ph /\ a e. A ) -> ( sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a x. b ) } w <_ sup ( C , RR , < ) ) ) |
| 105 |
78 104
|
mpbird |
|- ( ( ph /\ a e. A ) -> sup ( { z | E. b e. B z = ( a x. b ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 106 |
58 105
|
eqbrtrd |
|- ( ( ph /\ a e. A ) -> ( a x. sup ( B , RR , < ) ) <_ sup ( C , RR , < ) ) |
| 107 |
48 106
|
eqbrtrd |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) x. a ) <_ sup ( C , RR , < ) ) |
| 108 |
|
breq1 |
|- ( w = ( sup ( B , RR , < ) x. a ) -> ( w <_ sup ( C , RR , < ) <-> ( sup ( B , RR , < ) x. a ) <_ sup ( C , RR , < ) ) ) |
| 109 |
107 108
|
syl5ibrcom |
|- ( ( ph /\ a e. A ) -> ( w = ( sup ( B , RR , < ) x. a ) -> w <_ sup ( C , RR , < ) ) ) |
| 110 |
109
|
rexlimdva |
|- ( ph -> ( E. a e. A w = ( sup ( B , RR , < ) x. a ) -> w <_ sup ( C , RR , < ) ) ) |
| 111 |
41 110
|
biimtrid |
|- ( ph -> ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } -> w <_ sup ( C , RR , < ) ) ) |
| 112 |
111
|
ralrimiv |
|- ( ph -> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) |
| 113 |
42 44
|
remulcld |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) x. a ) e. RR ) |
| 114 |
|
eleq1a |
|- ( ( sup ( B , RR , < ) x. a ) e. RR -> ( z = ( sup ( B , RR , < ) x. a ) -> z e. RR ) ) |
| 115 |
113 114
|
syl |
|- ( ( ph /\ a e. A ) -> ( z = ( sup ( B , RR , < ) x. a ) -> z e. RR ) ) |
| 116 |
115
|
rexlimdva |
|- ( ph -> ( E. a e. A z = ( sup ( B , RR , < ) x. a ) -> z e. RR ) ) |
| 117 |
116
|
abssdv |
|- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } C_ RR ) |
| 118 |
3
|
simp2d |
|- ( ph -> A =/= (/) ) |
| 119 |
|
ovex |
|- ( sup ( B , RR , < ) x. a ) e. _V |
| 120 |
119
|
isseti |
|- E. z z = ( sup ( B , RR , < ) x. a ) |
| 121 |
120
|
rgenw |
|- A. a e. A E. z z = ( sup ( B , RR , < ) x. a ) |
| 122 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. a e. A E. z z = ( sup ( B , RR , < ) x. a ) ) -> E. a e. A E. z z = ( sup ( B , RR , < ) x. a ) ) |
| 123 |
118 121 122
|
sylancl |
|- ( ph -> E. a e. A E. z z = ( sup ( B , RR , < ) x. a ) ) |
| 124 |
|
rexcom4 |
|- ( E. a e. A E. z z = ( sup ( B , RR , < ) x. a ) <-> E. z E. a e. A z = ( sup ( B , RR , < ) x. a ) ) |
| 125 |
123 124
|
sylib |
|- ( ph -> E. z E. a e. A z = ( sup ( B , RR , < ) x. a ) ) |
| 126 |
|
abn0 |
|- ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } =/= (/) <-> E. z E. a e. A z = ( sup ( B , RR , < ) x. a ) ) |
| 127 |
125 126
|
sylibr |
|- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } =/= (/) ) |
| 128 |
|
brralrspcev |
|- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ x ) |
| 129 |
99 112 128
|
syl2anc |
|- ( ph -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ x ) |
| 130 |
|
suprleub |
|- ( ( ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } C_ RR /\ { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } =/= (/) /\ E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) ) |
| 131 |
117 127 129 99 130
|
syl31anc |
|- ( ph -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } w <_ sup ( C , RR , < ) ) ) |
| 132 |
112 131
|
mpbird |
|- ( ph -> sup ( { z | E. a e. A z = ( sup ( B , RR , < ) x. a ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 133 |
37 132
|
eqbrtrd |
|- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <_ sup ( C , RR , < ) ) |
| 134 |
1 2
|
supmullem1 |
|- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) |
| 135 |
5 8
|
remulcld |
|- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR ) |
| 136 |
|
suprleub |
|- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR ) -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) ) |
| 137 |
72 135 136
|
syl2anc |
|- ( ph -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) ) |
| 138 |
134 137
|
mpbird |
|- ( ph -> sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) |
| 139 |
135 99
|
letri3d |
|- ( ph -> ( ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( C , RR , < ) <-> ( ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) ) ) |
| 140 |
133 138 139
|
mpbir2and |
|- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |