Step |
Hyp |
Ref |
Expression |
1 |
|
supmul.1 |
|- C = { z | E. v e. A E. b e. B z = ( v x. b ) } |
2 |
|
supmul.2 |
|- ( ph <-> ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
3 |
|
vex |
|- w e. _V |
4 |
|
oveq1 |
|- ( v = a -> ( v x. b ) = ( a x. b ) ) |
5 |
4
|
eqeq2d |
|- ( v = a -> ( z = ( v x. b ) <-> z = ( a x. b ) ) ) |
6 |
5
|
rexbidv |
|- ( v = a -> ( E. b e. B z = ( v x. b ) <-> E. b e. B z = ( a x. b ) ) ) |
7 |
6
|
cbvrexvw |
|- ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B z = ( a x. b ) ) |
8 |
|
eqeq1 |
|- ( z = w -> ( z = ( a x. b ) <-> w = ( a x. b ) ) ) |
9 |
8
|
2rexbidv |
|- ( z = w -> ( E. a e. A E. b e. B z = ( a x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
10 |
7 9
|
syl5bb |
|- ( z = w -> ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
11 |
3 10 1
|
elab2 |
|- ( w e. C <-> E. a e. A E. b e. B w = ( a x. b ) ) |
12 |
2
|
simp2bi |
|- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
13 |
12
|
simp1d |
|- ( ph -> A C_ RR ) |
14 |
13
|
sseld |
|- ( ph -> ( a e. A -> a e. RR ) ) |
15 |
2
|
simp3bi |
|- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
16 |
15
|
simp1d |
|- ( ph -> B C_ RR ) |
17 |
16
|
sseld |
|- ( ph -> ( b e. B -> b e. RR ) ) |
18 |
14 17
|
anim12d |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( a e. RR /\ b e. RR ) ) ) |
19 |
|
remulcl |
|- ( ( a e. RR /\ b e. RR ) -> ( a x. b ) e. RR ) |
20 |
18 19
|
syl6 |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( a x. b ) e. RR ) ) |
21 |
|
eleq1a |
|- ( ( a x. b ) e. RR -> ( w = ( a x. b ) -> w e. RR ) ) |
22 |
20 21
|
syl6 |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( w = ( a x. b ) -> w e. RR ) ) ) |
23 |
22
|
rexlimdvv |
|- ( ph -> ( E. a e. A E. b e. B w = ( a x. b ) -> w e. RR ) ) |
24 |
11 23
|
syl5bi |
|- ( ph -> ( w e. C -> w e. RR ) ) |
25 |
24
|
ssrdv |
|- ( ph -> C C_ RR ) |
26 |
12
|
simp2d |
|- ( ph -> A =/= (/) ) |
27 |
15
|
simp2d |
|- ( ph -> B =/= (/) ) |
28 |
|
ovex |
|- ( a x. b ) e. _V |
29 |
28
|
isseti |
|- E. w w = ( a x. b ) |
30 |
29
|
rgenw |
|- A. b e. B E. w w = ( a x. b ) |
31 |
|
r19.2z |
|- ( ( B =/= (/) /\ A. b e. B E. w w = ( a x. b ) ) -> E. b e. B E. w w = ( a x. b ) ) |
32 |
27 30 31
|
sylancl |
|- ( ph -> E. b e. B E. w w = ( a x. b ) ) |
33 |
|
rexcom4 |
|- ( E. b e. B E. w w = ( a x. b ) <-> E. w E. b e. B w = ( a x. b ) ) |
34 |
32 33
|
sylib |
|- ( ph -> E. w E. b e. B w = ( a x. b ) ) |
35 |
34
|
ralrimivw |
|- ( ph -> A. a e. A E. w E. b e. B w = ( a x. b ) ) |
36 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. a e. A E. w E. b e. B w = ( a x. b ) ) -> E. a e. A E. w E. b e. B w = ( a x. b ) ) |
37 |
26 35 36
|
syl2anc |
|- ( ph -> E. a e. A E. w E. b e. B w = ( a x. b ) ) |
38 |
|
rexcom4 |
|- ( E. a e. A E. w E. b e. B w = ( a x. b ) <-> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
39 |
37 38
|
sylib |
|- ( ph -> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
40 |
|
n0 |
|- ( C =/= (/) <-> E. w w e. C ) |
41 |
11
|
exbii |
|- ( E. w w e. C <-> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
42 |
40 41
|
bitri |
|- ( C =/= (/) <-> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
43 |
39 42
|
sylibr |
|- ( ph -> C =/= (/) ) |
44 |
|
suprcl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
45 |
12 44
|
syl |
|- ( ph -> sup ( A , RR , < ) e. RR ) |
46 |
|
suprcl |
|- ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) -> sup ( B , RR , < ) e. RR ) |
47 |
15 46
|
syl |
|- ( ph -> sup ( B , RR , < ) e. RR ) |
48 |
45 47
|
remulcld |
|- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR ) |
49 |
1 2
|
supmullem1 |
|- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) |
50 |
|
brralrspcev |
|- ( ( ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR /\ A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) -> E. x e. RR A. w e. C w <_ x ) |
51 |
48 49 50
|
syl2anc |
|- ( ph -> E. x e. RR A. w e. C w <_ x ) |
52 |
25 43 51
|
3jca |
|- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |