Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supp0cosupp0 | |- ( ( F e. V /\ G e. W ) -> ( ( F supp Z ) = (/) -> ( ( F o. G ) supp Z ) = (/) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | suppco | |- ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) | |
| 2 | imaeq2 | |- ( ( F supp Z ) = (/) -> ( `' G " ( F supp Z ) ) = ( `' G " (/) ) ) | |
| 3 | ima0 | |- ( `' G " (/) ) = (/) | |
| 4 | 2 3 | eqtrdi | |- ( ( F supp Z ) = (/) -> ( `' G " ( F supp Z ) ) = (/) ) | 
| 5 | 1 4 | sylan9eq | |- ( ( ( F e. V /\ G e. W ) /\ ( F supp Z ) = (/) ) -> ( ( F o. G ) supp Z ) = (/) ) | 
| 6 | 5 | ex | |- ( ( F e. V /\ G e. W ) -> ( ( F supp Z ) = (/) -> ( ( F o. G ) supp Z ) = (/) ) ) |