Description: The support of a class is empty if either the class or the "zero" is a proper class. (Contributed by AV, 28-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | supp0prc | |- ( -. ( X e. _V /\ Z e. _V ) -> ( X supp Z ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-supp | |- supp = ( x e. _V , z e. _V |-> { i e. dom x | ( x " { i } ) =/= { z } } ) |
|
2 | 1 | mpondm0 | |- ( -. ( X e. _V /\ Z e. _V ) -> ( X supp Z ) = (/) ) |