| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coexg |  |-  ( ( F e. V /\ G e. W ) -> ( F o. G ) e. _V ) | 
						
							| 2 |  | simpl |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> Z e. _V ) | 
						
							| 3 |  | suppimacnv |  |-  ( ( ( F o. G ) e. _V /\ Z e. _V ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) | 
						
							| 4 | 1 2 3 | syl2an2 |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) | 
						
							| 5 |  | cnvco |  |-  `' ( F o. G ) = ( `' G o. `' F ) | 
						
							| 6 | 5 | imaeq1i |  |-  ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) ) | 
						
							| 8 |  | imaco |  |-  ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 9 |  | simprl |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> F e. V ) | 
						
							| 10 |  | suppimacnv |  |-  ( ( F e. V /\ Z e. _V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 11 | 9 2 10 | syl2anc |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 12 | 11 | imaeq2d |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( `' G " ( F supp Z ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) ) | 
						
							| 13 | 8 12 | eqtr4id |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( F supp Z ) ) ) | 
						
							| 14 | 4 7 13 | 3eqtrd |  |-  ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) | 
						
							| 15 | 14 | ex |  |-  ( Z e. _V -> ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) ) | 
						
							| 16 |  | prcnel |  |-  ( -. Z e. _V -> -. Z e. _V ) | 
						
							| 17 | 16 | intnand |  |-  ( -. Z e. _V -> -. ( ( F o. G ) e. _V /\ Z e. _V ) ) | 
						
							| 18 |  | supp0prc |  |-  ( -. ( ( F o. G ) e. _V /\ Z e. _V ) -> ( ( F o. G ) supp Z ) = (/) ) | 
						
							| 19 | 17 18 | syl |  |-  ( -. Z e. _V -> ( ( F o. G ) supp Z ) = (/) ) | 
						
							| 20 | 16 | intnand |  |-  ( -. Z e. _V -> -. ( F e. _V /\ Z e. _V ) ) | 
						
							| 21 |  | supp0prc |  |-  ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) | 
						
							| 22 | 20 21 | syl |  |-  ( -. Z e. _V -> ( F supp Z ) = (/) ) | 
						
							| 23 | 22 | imaeq2d |  |-  ( -. Z e. _V -> ( `' G " ( F supp Z ) ) = ( `' G " (/) ) ) | 
						
							| 24 |  | ima0 |  |-  ( `' G " (/) ) = (/) | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( -. Z e. _V -> ( `' G " ( F supp Z ) ) = (/) ) | 
						
							| 26 | 19 25 | eqtr4d |  |-  ( -. Z e. _V -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) | 
						
							| 27 | 26 | a1d |  |-  ( -. Z e. _V -> ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) ) | 
						
							| 28 | 15 27 | pm2.61i |  |-  ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |