| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppcoss.f |
|- ( ph -> F Fn A ) |
| 2 |
|
suppcoss.g |
|- ( ph -> G : B --> A ) |
| 3 |
|
suppcoss.b |
|- ( ph -> B e. W ) |
| 4 |
|
suppcoss.y |
|- ( ph -> Y e. V ) |
| 5 |
|
suppcoss.1 |
|- ( ph -> ( F ` Y ) = Z ) |
| 6 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
| 7 |
1 6
|
sylib |
|- ( ph -> F : A --> ran F ) |
| 8 |
7 2
|
fcod |
|- ( ph -> ( F o. G ) : B --> ran F ) |
| 9 |
|
eldif |
|- ( k e. ( B \ ( G supp Y ) ) <-> ( k e. B /\ -. k e. ( G supp Y ) ) ) |
| 10 |
2
|
ffnd |
|- ( ph -> G Fn B ) |
| 11 |
|
elsuppfn |
|- ( ( G Fn B /\ B e. W /\ Y e. V ) -> ( k e. ( G supp Y ) <-> ( k e. B /\ ( G ` k ) =/= Y ) ) ) |
| 12 |
10 3 4 11
|
syl3anc |
|- ( ph -> ( k e. ( G supp Y ) <-> ( k e. B /\ ( G ` k ) =/= Y ) ) ) |
| 13 |
12
|
notbid |
|- ( ph -> ( -. k e. ( G supp Y ) <-> -. ( k e. B /\ ( G ` k ) =/= Y ) ) ) |
| 14 |
13
|
anbi2d |
|- ( ph -> ( ( k e. B /\ -. k e. ( G supp Y ) ) <-> ( k e. B /\ -. ( k e. B /\ ( G ` k ) =/= Y ) ) ) ) |
| 15 |
|
annotanannot |
|- ( ( k e. B /\ -. ( k e. B /\ ( G ` k ) =/= Y ) ) <-> ( k e. B /\ -. ( G ` k ) =/= Y ) ) |
| 16 |
14 15
|
bitrdi |
|- ( ph -> ( ( k e. B /\ -. k e. ( G supp Y ) ) <-> ( k e. B /\ -. ( G ` k ) =/= Y ) ) ) |
| 17 |
9 16
|
bitrid |
|- ( ph -> ( k e. ( B \ ( G supp Y ) ) <-> ( k e. B /\ -. ( G ` k ) =/= Y ) ) ) |
| 18 |
|
nne |
|- ( -. ( G ` k ) =/= Y <-> ( G ` k ) = Y ) |
| 19 |
18
|
anbi2i |
|- ( ( k e. B /\ -. ( G ` k ) =/= Y ) <-> ( k e. B /\ ( G ` k ) = Y ) ) |
| 20 |
2
|
adantr |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> G : B --> A ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> k e. B ) |
| 22 |
20 21
|
fvco3d |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( ( F o. G ) ` k ) = ( F ` ( G ` k ) ) ) |
| 23 |
|
simprr |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( G ` k ) = Y ) |
| 24 |
23
|
fveq2d |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( F ` ( G ` k ) ) = ( F ` Y ) ) |
| 25 |
5
|
adantr |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( F ` Y ) = Z ) |
| 26 |
22 24 25
|
3eqtrd |
|- ( ( ph /\ ( k e. B /\ ( G ` k ) = Y ) ) -> ( ( F o. G ) ` k ) = Z ) |
| 27 |
26
|
ex |
|- ( ph -> ( ( k e. B /\ ( G ` k ) = Y ) -> ( ( F o. G ) ` k ) = Z ) ) |
| 28 |
19 27
|
biimtrid |
|- ( ph -> ( ( k e. B /\ -. ( G ` k ) =/= Y ) -> ( ( F o. G ) ` k ) = Z ) ) |
| 29 |
17 28
|
sylbid |
|- ( ph -> ( k e. ( B \ ( G supp Y ) ) -> ( ( F o. G ) ` k ) = Z ) ) |
| 30 |
29
|
imp |
|- ( ( ph /\ k e. ( B \ ( G supp Y ) ) ) -> ( ( F o. G ) ` k ) = Z ) |
| 31 |
8 30
|
suppss |
|- ( ph -> ( ( F o. G ) supp Z ) C_ ( G supp Y ) ) |