Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> A C_ B ) |
2 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
3 |
2
|
ad2antrr |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> dom F = A ) |
4 |
|
fndm |
|- ( G Fn B -> dom G = B ) |
5 |
4
|
ad2antlr |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> dom G = B ) |
6 |
1 3 5
|
3sstr4d |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> dom F C_ dom G ) |
7 |
6
|
adantr |
|- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> dom F C_ dom G ) |
8 |
2
|
eleq2d |
|- ( F Fn A -> ( y e. dom F <-> y e. A ) ) |
9 |
8
|
ad2antrr |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( y e. dom F <-> y e. A ) ) |
10 |
|
fveqeq2 |
|- ( x = y -> ( ( G ` x ) = Z <-> ( G ` y ) = Z ) ) |
11 |
|
fveqeq2 |
|- ( x = y -> ( ( F ` x ) = Z <-> ( F ` y ) = Z ) ) |
12 |
10 11
|
imbi12d |
|- ( x = y -> ( ( ( G ` x ) = Z -> ( F ` x ) = Z ) <-> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) |
13 |
12
|
rspcv |
|- ( y e. A -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) |
14 |
9 13
|
syl6bi |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( y e. dom F -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) ) |
15 |
14
|
com23 |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( y e. dom F -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) ) |
16 |
15
|
imp31 |
|- ( ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) /\ y e. dom F ) -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) |
17 |
16
|
necon3d |
|- ( ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) /\ y e. dom F ) -> ( ( F ` y ) =/= Z -> ( G ` y ) =/= Z ) ) |
18 |
17
|
ex |
|- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( y e. dom F -> ( ( F ` y ) =/= Z -> ( G ` y ) =/= Z ) ) ) |
19 |
18
|
com23 |
|- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( ( F ` y ) =/= Z -> ( y e. dom F -> ( G ` y ) =/= Z ) ) ) |
20 |
19
|
3imp |
|- ( ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) /\ ( F ` y ) =/= Z /\ y e. dom F ) -> ( G ` y ) =/= Z ) |
21 |
7 20
|
rabssrabd |
|- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> { y e. dom F | ( F ` y ) =/= Z } C_ { y e. dom G | ( G ` y ) =/= Z } ) |
22 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
23 |
22
|
ad2antrr |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> Fun F ) |
24 |
|
simpl |
|- ( ( F Fn A /\ G Fn B ) -> F Fn A ) |
25 |
|
ssexg |
|- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
26 |
25
|
3adant3 |
|- ( ( A C_ B /\ B e. V /\ Z e. W ) -> A e. _V ) |
27 |
|
fnex |
|- ( ( F Fn A /\ A e. _V ) -> F e. _V ) |
28 |
24 26 27
|
syl2an |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> F e. _V ) |
29 |
|
simpr3 |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> Z e. W ) |
30 |
|
suppval1 |
|- ( ( Fun F /\ F e. _V /\ Z e. W ) -> ( F supp Z ) = { y e. dom F | ( F ` y ) =/= Z } ) |
31 |
23 28 29 30
|
syl3anc |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( F supp Z ) = { y e. dom F | ( F ` y ) =/= Z } ) |
32 |
|
fnfun |
|- ( G Fn B -> Fun G ) |
33 |
32
|
ad2antlr |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> Fun G ) |
34 |
|
simpr |
|- ( ( F Fn A /\ G Fn B ) -> G Fn B ) |
35 |
|
simp2 |
|- ( ( A C_ B /\ B e. V /\ Z e. W ) -> B e. V ) |
36 |
|
fnex |
|- ( ( G Fn B /\ B e. V ) -> G e. _V ) |
37 |
34 35 36
|
syl2an |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> G e. _V ) |
38 |
|
suppval1 |
|- ( ( Fun G /\ G e. _V /\ Z e. W ) -> ( G supp Z ) = { y e. dom G | ( G ` y ) =/= Z } ) |
39 |
33 37 29 38
|
syl3anc |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( G supp Z ) = { y e. dom G | ( G ` y ) =/= Z } ) |
40 |
31 39
|
sseq12d |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( ( F supp Z ) C_ ( G supp Z ) <-> { y e. dom F | ( F ` y ) =/= Z } C_ { y e. dom G | ( G ` y ) =/= Z } ) ) |
41 |
40
|
adantr |
|- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( ( F supp Z ) C_ ( G supp Z ) <-> { y e. dom F | ( F ` y ) =/= Z } C_ { y e. dom G | ( G ` y ) =/= Z } ) ) |
42 |
21 41
|
mpbird |
|- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( F supp Z ) C_ ( G supp Z ) ) |
43 |
42
|
ex |
|- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |