Step |
Hyp |
Ref |
Expression |
1 |
|
suppofssd.1 |
|- ( ph -> A e. V ) |
2 |
|
suppofssd.2 |
|- ( ph -> Z e. B ) |
3 |
|
suppofssd.3 |
|- ( ph -> F : A --> B ) |
4 |
|
suppofssd.4 |
|- ( ph -> G : A --> B ) |
5 |
|
suppofss2d.5 |
|- ( ( ph /\ x e. B ) -> ( x X Z ) = Z ) |
6 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
7 |
4
|
ffnd |
|- ( ph -> G Fn A ) |
8 |
|
inidm |
|- ( A i^i A ) = A |
9 |
|
eqidd |
|- ( ( ph /\ y e. A ) -> ( F ` y ) = ( F ` y ) ) |
10 |
|
eqidd |
|- ( ( ph /\ y e. A ) -> ( G ` y ) = ( G ` y ) ) |
11 |
6 7 1 1 8 9 10
|
ofval |
|- ( ( ph /\ y e. A ) -> ( ( F oF X G ) ` y ) = ( ( F ` y ) X ( G ` y ) ) ) |
12 |
11
|
adantr |
|- ( ( ( ph /\ y e. A ) /\ ( G ` y ) = Z ) -> ( ( F oF X G ) ` y ) = ( ( F ` y ) X ( G ` y ) ) ) |
13 |
|
simpr |
|- ( ( ( ph /\ y e. A ) /\ ( G ` y ) = Z ) -> ( G ` y ) = Z ) |
14 |
13
|
oveq2d |
|- ( ( ( ph /\ y e. A ) /\ ( G ` y ) = Z ) -> ( ( F ` y ) X ( G ` y ) ) = ( ( F ` y ) X Z ) ) |
15 |
5
|
ralrimiva |
|- ( ph -> A. x e. B ( x X Z ) = Z ) |
16 |
15
|
adantr |
|- ( ( ph /\ y e. A ) -> A. x e. B ( x X Z ) = Z ) |
17 |
3
|
ffvelrnda |
|- ( ( ph /\ y e. A ) -> ( F ` y ) e. B ) |
18 |
|
simpr |
|- ( ( ( ph /\ y e. A ) /\ x = ( F ` y ) ) -> x = ( F ` y ) ) |
19 |
18
|
oveq1d |
|- ( ( ( ph /\ y e. A ) /\ x = ( F ` y ) ) -> ( x X Z ) = ( ( F ` y ) X Z ) ) |
20 |
19
|
eqeq1d |
|- ( ( ( ph /\ y e. A ) /\ x = ( F ` y ) ) -> ( ( x X Z ) = Z <-> ( ( F ` y ) X Z ) = Z ) ) |
21 |
17 20
|
rspcdv |
|- ( ( ph /\ y e. A ) -> ( A. x e. B ( x X Z ) = Z -> ( ( F ` y ) X Z ) = Z ) ) |
22 |
16 21
|
mpd |
|- ( ( ph /\ y e. A ) -> ( ( F ` y ) X Z ) = Z ) |
23 |
22
|
adantr |
|- ( ( ( ph /\ y e. A ) /\ ( G ` y ) = Z ) -> ( ( F ` y ) X Z ) = Z ) |
24 |
12 14 23
|
3eqtrd |
|- ( ( ( ph /\ y e. A ) /\ ( G ` y ) = Z ) -> ( ( F oF X G ) ` y ) = Z ) |
25 |
24
|
ex |
|- ( ( ph /\ y e. A ) -> ( ( G ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) ) |
26 |
25
|
ralrimiva |
|- ( ph -> A. y e. A ( ( G ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) ) |
27 |
6 7 1 1 8
|
offn |
|- ( ph -> ( F oF X G ) Fn A ) |
28 |
|
ssidd |
|- ( ph -> A C_ A ) |
29 |
|
suppfnss |
|- ( ( ( ( F oF X G ) Fn A /\ G Fn A ) /\ ( A C_ A /\ A e. V /\ Z e. B ) ) -> ( A. y e. A ( ( G ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) -> ( ( F oF X G ) supp Z ) C_ ( G supp Z ) ) ) |
30 |
27 7 28 1 2 29
|
syl23anc |
|- ( ph -> ( A. y e. A ( ( G ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) -> ( ( F oF X G ) supp Z ) C_ ( G supp Z ) ) ) |
31 |
26 30
|
mpd |
|- ( ph -> ( ( F oF X G ) supp Z ) C_ ( G supp Z ) ) |