| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppofssd.1 |
|- ( ph -> A e. V ) |
| 2 |
|
suppofssd.2 |
|- ( ph -> Z e. B ) |
| 3 |
|
suppofssd.3 |
|- ( ph -> F : A --> B ) |
| 4 |
|
suppofssd.4 |
|- ( ph -> G : A --> B ) |
| 5 |
|
suppofssd.5 |
|- ( ph -> ( Z X Z ) = Z ) |
| 6 |
|
ovexd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x X y ) e. _V ) |
| 7 |
|
inidm |
|- ( A i^i A ) = A |
| 8 |
6 3 4 1 1 7
|
off |
|- ( ph -> ( F oF X G ) : A --> _V ) |
| 9 |
|
eldif |
|- ( k e. ( A \ ( ( F supp Z ) u. ( G supp Z ) ) ) <-> ( k e. A /\ -. k e. ( ( F supp Z ) u. ( G supp Z ) ) ) ) |
| 10 |
|
ioran |
|- ( -. ( k e. ( F supp Z ) \/ k e. ( G supp Z ) ) <-> ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) |
| 11 |
|
elun |
|- ( k e. ( ( F supp Z ) u. ( G supp Z ) ) <-> ( k e. ( F supp Z ) \/ k e. ( G supp Z ) ) ) |
| 12 |
10 11
|
xchnxbir |
|- ( -. k e. ( ( F supp Z ) u. ( G supp Z ) ) <-> ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) |
| 13 |
12
|
anbi2i |
|- ( ( k e. A /\ -. k e. ( ( F supp Z ) u. ( G supp Z ) ) ) <-> ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) |
| 14 |
9 13
|
bitri |
|- ( k e. ( A \ ( ( F supp Z ) u. ( G supp Z ) ) ) <-> ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) |
| 15 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
| 16 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. V /\ Z e. B ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 17 |
15 1 2 16
|
syl3anc |
|- ( ph -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 18 |
17
|
notbid |
|- ( ph -> ( -. k e. ( F supp Z ) <-> -. ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 19 |
18
|
biimpd |
|- ( ph -> ( -. k e. ( F supp Z ) -> -. ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 20 |
4
|
ffnd |
|- ( ph -> G Fn A ) |
| 21 |
|
elsuppfn |
|- ( ( G Fn A /\ A e. V /\ Z e. B ) -> ( k e. ( G supp Z ) <-> ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 22 |
20 1 2 21
|
syl3anc |
|- ( ph -> ( k e. ( G supp Z ) <-> ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 23 |
22
|
notbid |
|- ( ph -> ( -. k e. ( G supp Z ) <-> -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 24 |
23
|
biimpd |
|- ( ph -> ( -. k e. ( G supp Z ) -> -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 25 |
19 24
|
anim12d |
|- ( ph -> ( ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) -> ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) |
| 26 |
25
|
anim2d |
|- ( ph -> ( ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) -> ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) ) |
| 27 |
26
|
imp |
|- ( ( ph /\ ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) -> ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) |
| 28 |
|
pm3.2 |
|- ( k e. A -> ( ( F ` k ) =/= Z -> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 29 |
28
|
necon1bd |
|- ( k e. A -> ( -. ( k e. A /\ ( F ` k ) =/= Z ) -> ( F ` k ) = Z ) ) |
| 30 |
|
pm3.2 |
|- ( k e. A -> ( ( G ` k ) =/= Z -> ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 31 |
30
|
necon1bd |
|- ( k e. A -> ( -. ( k e. A /\ ( G ` k ) =/= Z ) -> ( G ` k ) = Z ) ) |
| 32 |
29 31
|
anim12d |
|- ( k e. A -> ( ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) -> ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) |
| 33 |
32
|
imdistani |
|- ( ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) -> ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) |
| 34 |
15
|
adantr |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> F Fn A ) |
| 35 |
20
|
adantr |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> G Fn A ) |
| 36 |
1
|
adantr |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> A e. V ) |
| 37 |
|
simprl |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> k e. A ) |
| 38 |
|
fnfvof |
|- ( ( ( F Fn A /\ G Fn A ) /\ ( A e. V /\ k e. A ) ) -> ( ( F oF X G ) ` k ) = ( ( F ` k ) X ( G ` k ) ) ) |
| 39 |
34 35 36 37 38
|
syl22anc |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( ( F oF X G ) ` k ) = ( ( F ` k ) X ( G ` k ) ) ) |
| 40 |
|
oveq12 |
|- ( ( ( F ` k ) = Z /\ ( G ` k ) = Z ) -> ( ( F ` k ) X ( G ` k ) ) = ( Z X Z ) ) |
| 41 |
40
|
ad2antll |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( ( F ` k ) X ( G ` k ) ) = ( Z X Z ) ) |
| 42 |
5
|
adantr |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( Z X Z ) = Z ) |
| 43 |
39 41 42
|
3eqtrd |
|- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 44 |
33 43
|
sylan2 |
|- ( ( ph /\ ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 45 |
27 44
|
syldan |
|- ( ( ph /\ ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 46 |
14 45
|
sylan2b |
|- ( ( ph /\ k e. ( A \ ( ( F supp Z ) u. ( G supp Z ) ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 47 |
8 46
|
suppss |
|- ( ph -> ( ( F oF X G ) supp Z ) C_ ( ( F supp Z ) u. ( G supp Z ) ) ) |