Step |
Hyp |
Ref |
Expression |
1 |
|
suppss.f |
|- ( ph -> F : A --> B ) |
2 |
|
suppss.n |
|- ( ( ph /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
3 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
4 |
3
|
adantl |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> F Fn A ) |
5 |
|
simpll |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> F e. _V ) |
6 |
|
simplr |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> Z e. _V ) |
7 |
|
elsuppfng |
|- ( ( F Fn A /\ F e. _V /\ Z e. _V ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
8 |
4 5 6 7
|
syl3anc |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
9 |
|
eldif |
|- ( k e. ( A \ W ) <-> ( k e. A /\ -. k e. W ) ) |
10 |
2
|
adantll |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
11 |
9 10
|
sylan2br |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ ( k e. A /\ -. k e. W ) ) -> ( F ` k ) = Z ) |
12 |
11
|
expr |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. A ) -> ( -. k e. W -> ( F ` k ) = Z ) ) |
13 |
12
|
necon1ad |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. A ) -> ( ( F ` k ) =/= Z -> k e. W ) ) |
14 |
13
|
expimpd |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( ( k e. A /\ ( F ` k ) =/= Z ) -> k e. W ) ) |
15 |
8 14
|
sylbid |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( k e. ( F supp Z ) -> k e. W ) ) |
16 |
15
|
ssrdv |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( F supp Z ) C_ W ) |
17 |
16
|
ex |
|- ( ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ W ) ) |
18 |
|
supp0prc |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
19 |
|
0ss |
|- (/) C_ W |
20 |
18 19
|
eqsstrdi |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) C_ W ) |
21 |
20
|
a1d |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ W ) ) |
22 |
17 21
|
pm2.61i |
|- ( ph -> ( F supp Z ) C_ W ) |