Step |
Hyp |
Ref |
Expression |
1 |
|
suppss3.1 |
|- G = ( x e. A |-> B ) |
2 |
|
suppss3.a |
|- ( ph -> A e. V ) |
3 |
|
suppss3.z |
|- ( ph -> Z e. W ) |
4 |
|
suppss3.2 |
|- ( ph -> F Fn A ) |
5 |
|
suppss3.3 |
|- ( ( ph /\ x e. A /\ ( F ` x ) = Z ) -> B = Z ) |
6 |
1
|
oveq1i |
|- ( G supp Z ) = ( ( x e. A |-> B ) supp Z ) |
7 |
|
simpl |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ph ) |
8 |
|
eldifi |
|- ( x e. ( A \ ( F supp Z ) ) -> x e. A ) |
9 |
8
|
adantl |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> x e. A ) |
10 |
|
fnex |
|- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
11 |
4 2 10
|
syl2anc |
|- ( ph -> F e. _V ) |
12 |
|
suppimacnv |
|- ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
13 |
11 3 12
|
syl2anc |
|- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
14 |
13
|
eleq2d |
|- ( ph -> ( x e. ( F supp Z ) <-> x e. ( `' F " ( _V \ { Z } ) ) ) ) |
15 |
|
elpreima |
|- ( F Fn A -> ( x e. ( `' F " ( _V \ { Z } ) ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { Z } ) ) ) ) |
16 |
4 15
|
syl |
|- ( ph -> ( x e. ( `' F " ( _V \ { Z } ) ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { Z } ) ) ) ) |
17 |
14 16
|
bitrd |
|- ( ph -> ( x e. ( F supp Z ) <-> ( x e. A /\ ( F ` x ) e. ( _V \ { Z } ) ) ) ) |
18 |
17
|
baibd |
|- ( ( ph /\ x e. A ) -> ( x e. ( F supp Z ) <-> ( F ` x ) e. ( _V \ { Z } ) ) ) |
19 |
18
|
notbid |
|- ( ( ph /\ x e. A ) -> ( -. x e. ( F supp Z ) <-> -. ( F ` x ) e. ( _V \ { Z } ) ) ) |
20 |
19
|
biimpd |
|- ( ( ph /\ x e. A ) -> ( -. x e. ( F supp Z ) -> -. ( F ` x ) e. ( _V \ { Z } ) ) ) |
21 |
20
|
expimpd |
|- ( ph -> ( ( x e. A /\ -. x e. ( F supp Z ) ) -> -. ( F ` x ) e. ( _V \ { Z } ) ) ) |
22 |
|
eldif |
|- ( x e. ( A \ ( F supp Z ) ) <-> ( x e. A /\ -. x e. ( F supp Z ) ) ) |
23 |
|
fvex |
|- ( F ` x ) e. _V |
24 |
|
eldifsn |
|- ( ( F ` x ) e. ( _V \ { Z } ) <-> ( ( F ` x ) e. _V /\ ( F ` x ) =/= Z ) ) |
25 |
23 24
|
mpbiran |
|- ( ( F ` x ) e. ( _V \ { Z } ) <-> ( F ` x ) =/= Z ) |
26 |
25
|
necon2bbii |
|- ( ( F ` x ) = Z <-> -. ( F ` x ) e. ( _V \ { Z } ) ) |
27 |
21 22 26
|
3imtr4g |
|- ( ph -> ( x e. ( A \ ( F supp Z ) ) -> ( F ` x ) = Z ) ) |
28 |
27
|
imp |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> ( F ` x ) = Z ) |
29 |
7 9 28 5
|
syl3anc |
|- ( ( ph /\ x e. ( A \ ( F supp Z ) ) ) -> B = Z ) |
30 |
29 2
|
suppss2 |
|- ( ph -> ( ( x e. A |-> B ) supp Z ) C_ ( F supp Z ) ) |
31 |
6 30
|
eqsstrid |
|- ( ph -> ( G supp Z ) C_ ( F supp Z ) ) |