Step |
Hyp |
Ref |
Expression |
1 |
|
suppss.f |
|- ( ph -> F : A --> B ) |
2 |
|
suppss.n |
|- ( ( ph /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
3 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
4 |
3
|
adantl |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> F Fn A ) |
5 |
|
fdm |
|- ( F : A --> B -> dom F = A ) |
6 |
|
dmexg |
|- ( F e. _V -> dom F e. _V ) |
7 |
6
|
adantr |
|- ( ( F e. _V /\ Z e. _V ) -> dom F e. _V ) |
8 |
|
eleq1 |
|- ( A = dom F -> ( A e. _V <-> dom F e. _V ) ) |
9 |
8
|
eqcoms |
|- ( dom F = A -> ( A e. _V <-> dom F e. _V ) ) |
10 |
7 9
|
syl5ibr |
|- ( dom F = A -> ( ( F e. _V /\ Z e. _V ) -> A e. _V ) ) |
11 |
1 5 10
|
3syl |
|- ( ph -> ( ( F e. _V /\ Z e. _V ) -> A e. _V ) ) |
12 |
11
|
impcom |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> A e. _V ) |
13 |
|
simplr |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> Z e. _V ) |
14 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. _V /\ Z e. _V ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
15 |
4 12 13 14
|
syl3anc |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
16 |
|
eldif |
|- ( k e. ( A \ W ) <-> ( k e. A /\ -. k e. W ) ) |
17 |
2
|
adantll |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
18 |
16 17
|
sylan2br |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ ( k e. A /\ -. k e. W ) ) -> ( F ` k ) = Z ) |
19 |
18
|
expr |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. A ) -> ( -. k e. W -> ( F ` k ) = Z ) ) |
20 |
19
|
necon1ad |
|- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. A ) -> ( ( F ` k ) =/= Z -> k e. W ) ) |
21 |
20
|
expimpd |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( ( k e. A /\ ( F ` k ) =/= Z ) -> k e. W ) ) |
22 |
15 21
|
sylbid |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( k e. ( F supp Z ) -> k e. W ) ) |
23 |
22
|
ssrdv |
|- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( F supp Z ) C_ W ) |
24 |
23
|
ex |
|- ( ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ W ) ) |
25 |
|
supp0prc |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
26 |
|
0ss |
|- (/) C_ W |
27 |
25 26
|
eqsstrdi |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) C_ W ) |
28 |
27
|
a1d |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ W ) ) |
29 |
24 28
|
pm2.61i |
|- ( ph -> ( F supp Z ) C_ W ) |