Metamath Proof Explorer


Theorem suppssnn0

Description: Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses suppssnn0.f
|- ( ph -> F Fn NN0 )
suppssnn0.n
|- ( ( ( ph /\ k e. NN0 ) /\ N <_ k ) -> ( F ` k ) = Z )
suppssnn0.1
|- ( ph -> N e. ZZ )
Assertion suppssnn0
|- ( ph -> ( F supp Z ) C_ ( 0 ..^ N ) )

Proof

Step Hyp Ref Expression
1 suppssnn0.f
 |-  ( ph -> F Fn NN0 )
2 suppssnn0.n
 |-  ( ( ( ph /\ k e. NN0 ) /\ N <_ k ) -> ( F ` k ) = Z )
3 suppssnn0.1
 |-  ( ph -> N e. ZZ )
4 dffn3
 |-  ( F Fn NN0 <-> F : NN0 --> ran F )
5 1 4 sylib
 |-  ( ph -> F : NN0 --> ran F )
6 simpl
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ph )
7 eldifi
 |-  ( k e. ( NN0 \ ( 0 ..^ N ) ) -> k e. NN0 )
8 7 adantl
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. NN0 )
9 3 zred
 |-  ( ph -> N e. RR )
10 9 adantr
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> N e. RR )
11 8 nn0red
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. RR )
12 3 adantr
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> N e. ZZ )
13 simpr
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. ( NN0 \ ( 0 ..^ N ) ) )
14 12 13 nn0difffzod
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> -. k < N )
15 10 11 14 nltled
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> N <_ k )
16 6 8 15 2 syl21anc
 |-  ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ( F ` k ) = Z )
17 5 16 suppss
 |-  ( ph -> ( F supp Z ) C_ ( 0 ..^ N ) )