Step |
Hyp |
Ref |
Expression |
1 |
|
suppssof1.s |
|- ( ph -> ( A supp Y ) C_ L ) |
2 |
|
suppssof1.o |
|- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
3 |
|
suppssof1.a |
|- ( ph -> A : D --> V ) |
4 |
|
suppssof1.b |
|- ( ph -> B : D --> R ) |
5 |
|
suppssof1.d |
|- ( ph -> D e. W ) |
6 |
|
suppssof1.y |
|- ( ph -> Y e. U ) |
7 |
3
|
ffnd |
|- ( ph -> A Fn D ) |
8 |
4
|
ffnd |
|- ( ph -> B Fn D ) |
9 |
|
inidm |
|- ( D i^i D ) = D |
10 |
|
eqidd |
|- ( ( ph /\ x e. D ) -> ( A ` x ) = ( A ` x ) ) |
11 |
|
eqidd |
|- ( ( ph /\ x e. D ) -> ( B ` x ) = ( B ` x ) ) |
12 |
7 8 5 5 9 10 11
|
offval |
|- ( ph -> ( A oF O B ) = ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) ) |
13 |
12
|
oveq1d |
|- ( ph -> ( ( A oF O B ) supp Z ) = ( ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) supp Z ) ) |
14 |
3
|
feqmptd |
|- ( ph -> A = ( x e. D |-> ( A ` x ) ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( A supp Y ) = ( ( x e. D |-> ( A ` x ) ) supp Y ) ) |
16 |
15 1
|
eqsstrrd |
|- ( ph -> ( ( x e. D |-> ( A ` x ) ) supp Y ) C_ L ) |
17 |
|
fvexd |
|- ( ( ph /\ x e. D ) -> ( A ` x ) e. _V ) |
18 |
4
|
ffvelrnda |
|- ( ( ph /\ x e. D ) -> ( B ` x ) e. R ) |
19 |
16 2 17 18 6
|
suppssov1 |
|- ( ph -> ( ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) supp Z ) C_ L ) |
20 |
13 19
|
eqsstrd |
|- ( ph -> ( ( A oF O B ) supp Z ) C_ L ) |