Metamath Proof Explorer


Theorem suppssof1

Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssof1.s
|- ( ph -> ( A supp Y ) C_ L )
suppssof1.o
|- ( ( ph /\ v e. R ) -> ( Y O v ) = Z )
suppssof1.a
|- ( ph -> A : D --> V )
suppssof1.b
|- ( ph -> B : D --> R )
suppssof1.d
|- ( ph -> D e. W )
suppssof1.y
|- ( ph -> Y e. U )
Assertion suppssof1
|- ( ph -> ( ( A oF O B ) supp Z ) C_ L )

Proof

Step Hyp Ref Expression
1 suppssof1.s
 |-  ( ph -> ( A supp Y ) C_ L )
2 suppssof1.o
 |-  ( ( ph /\ v e. R ) -> ( Y O v ) = Z )
3 suppssof1.a
 |-  ( ph -> A : D --> V )
4 suppssof1.b
 |-  ( ph -> B : D --> R )
5 suppssof1.d
 |-  ( ph -> D e. W )
6 suppssof1.y
 |-  ( ph -> Y e. U )
7 3 ffnd
 |-  ( ph -> A Fn D )
8 4 ffnd
 |-  ( ph -> B Fn D )
9 inidm
 |-  ( D i^i D ) = D
10 eqidd
 |-  ( ( ph /\ x e. D ) -> ( A ` x ) = ( A ` x ) )
11 eqidd
 |-  ( ( ph /\ x e. D ) -> ( B ` x ) = ( B ` x ) )
12 7 8 5 5 9 10 11 offval
 |-  ( ph -> ( A oF O B ) = ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) )
13 12 oveq1d
 |-  ( ph -> ( ( A oF O B ) supp Z ) = ( ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) supp Z ) )
14 3 feqmptd
 |-  ( ph -> A = ( x e. D |-> ( A ` x ) ) )
15 14 oveq1d
 |-  ( ph -> ( A supp Y ) = ( ( x e. D |-> ( A ` x ) ) supp Y ) )
16 15 1 eqsstrrd
 |-  ( ph -> ( ( x e. D |-> ( A ` x ) ) supp Y ) C_ L )
17 fvexd
 |-  ( ( ph /\ x e. D ) -> ( A ` x ) e. _V )
18 4 ffvelrnda
 |-  ( ( ph /\ x e. D ) -> ( B ` x ) e. R )
19 16 2 17 18 6 suppssov1
 |-  ( ph -> ( ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) supp Z ) C_ L )
20 13 19 eqsstrd
 |-  ( ph -> ( ( A oF O B ) supp Z ) C_ L )