Step |
Hyp |
Ref |
Expression |
1 |
|
suppssr.f |
|- ( ph -> F : A --> B ) |
2 |
|
suppssr.n |
|- ( ph -> ( F supp Z ) C_ W ) |
3 |
|
suppssr.a |
|- ( ph -> A e. V ) |
4 |
|
suppssr.z |
|- ( ph -> Z e. U ) |
5 |
|
eldif |
|- ( X e. ( A \ W ) <-> ( X e. A /\ -. X e. W ) ) |
6 |
|
fvex |
|- ( F ` X ) e. _V |
7 |
|
eldifsn |
|- ( ( F ` X ) e. ( _V \ { Z } ) <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) |
8 |
6 7
|
mpbiran |
|- ( ( F ` X ) e. ( _V \ { Z } ) <-> ( F ` X ) =/= Z ) |
9 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
10 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. V /\ Z e. U ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
11 |
9 3 4 10
|
syl3anc |
|- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
12 |
|
ibar |
|- ( ( F ` X ) e. _V -> ( ( F ` X ) =/= Z <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) ) |
13 |
6 12
|
mp1i |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) ) |
14 |
13 7
|
bitr4di |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z <-> ( F ` X ) e. ( _V \ { Z } ) ) ) |
15 |
14
|
pm5.32da |
|- ( ph -> ( ( X e. A /\ ( F ` X ) =/= Z ) <-> ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) ) ) |
16 |
11 15
|
bitrd |
|- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) ) ) |
17 |
2
|
sseld |
|- ( ph -> ( X e. ( F supp Z ) -> X e. W ) ) |
18 |
16 17
|
sylbird |
|- ( ph -> ( ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) -> X e. W ) ) |
19 |
18
|
expdimp |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) e. ( _V \ { Z } ) -> X e. W ) ) |
20 |
8 19
|
syl5bir |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z -> X e. W ) ) |
21 |
20
|
necon1bd |
|- ( ( ph /\ X e. A ) -> ( -. X e. W -> ( F ` X ) = Z ) ) |
22 |
21
|
impr |
|- ( ( ph /\ ( X e. A /\ -. X e. W ) ) -> ( F ` X ) = Z ) |
23 |
5 22
|
sylan2b |
|- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |