| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppssr.f |
|- ( ph -> F : A --> B ) |
| 2 |
|
suppssr.n |
|- ( ph -> ( F supp Z ) C_ W ) |
| 3 |
|
suppssr.a |
|- ( ph -> A e. V ) |
| 4 |
|
suppssr.z |
|- ( ph -> Z e. U ) |
| 5 |
|
eldif |
|- ( X e. ( A \ W ) <-> ( X e. A /\ -. X e. W ) ) |
| 6 |
|
fvex |
|- ( F ` X ) e. _V |
| 7 |
|
eldifsn |
|- ( ( F ` X ) e. ( _V \ { Z } ) <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) |
| 8 |
6 7
|
mpbiran |
|- ( ( F ` X ) e. ( _V \ { Z } ) <-> ( F ` X ) =/= Z ) |
| 9 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
| 10 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. V /\ Z e. U ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
| 11 |
9 3 4 10
|
syl3anc |
|- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
| 12 |
|
ibar |
|- ( ( F ` X ) e. _V -> ( ( F ` X ) =/= Z <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) ) |
| 13 |
6 12
|
mp1i |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) ) |
| 14 |
13 7
|
bitr4di |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z <-> ( F ` X ) e. ( _V \ { Z } ) ) ) |
| 15 |
14
|
pm5.32da |
|- ( ph -> ( ( X e. A /\ ( F ` X ) =/= Z ) <-> ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) ) ) |
| 16 |
11 15
|
bitrd |
|- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) ) ) |
| 17 |
2
|
sseld |
|- ( ph -> ( X e. ( F supp Z ) -> X e. W ) ) |
| 18 |
16 17
|
sylbird |
|- ( ph -> ( ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) -> X e. W ) ) |
| 19 |
18
|
expdimp |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) e. ( _V \ { Z } ) -> X e. W ) ) |
| 20 |
8 19
|
biimtrrid |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z -> X e. W ) ) |
| 21 |
20
|
necon1bd |
|- ( ( ph /\ X e. A ) -> ( -. X e. W -> ( F ` X ) = Z ) ) |
| 22 |
21
|
impr |
|- ( ( ph /\ ( X e. A /\ -. X e. W ) ) -> ( F ` X ) = Z ) |
| 23 |
5 22
|
sylan2b |
|- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |