Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppsssn.n | |- ( ( ph /\ k e. A /\ k =/= W ) -> B = Z ) |
|
suppsssn.a | |- ( ph -> A e. V ) |
||
Assertion | suppsssn | |- ( ph -> ( ( k e. A |-> B ) supp Z ) C_ { W } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppsssn.n | |- ( ( ph /\ k e. A /\ k =/= W ) -> B = Z ) |
|
2 | suppsssn.a | |- ( ph -> A e. V ) |
|
3 | eldifsn | |- ( k e. ( A \ { W } ) <-> ( k e. A /\ k =/= W ) ) |
|
4 | 1 | 3expb | |- ( ( ph /\ ( k e. A /\ k =/= W ) ) -> B = Z ) |
5 | 3 4 | sylan2b | |- ( ( ph /\ k e. ( A \ { W } ) ) -> B = Z ) |
6 | 5 2 | suppss2 | |- ( ph -> ( ( k e. A |-> B ) supp Z ) C_ { W } ) |