Metamath Proof Explorer


Theorem suppsssn

Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019)

Ref Expression
Hypotheses suppsssn.n
|- ( ( ph /\ k e. A /\ k =/= W ) -> B = Z )
suppsssn.a
|- ( ph -> A e. V )
Assertion suppsssn
|- ( ph -> ( ( k e. A |-> B ) supp Z ) C_ { W } )

Proof

Step Hyp Ref Expression
1 suppsssn.n
 |-  ( ( ph /\ k e. A /\ k =/= W ) -> B = Z )
2 suppsssn.a
 |-  ( ph -> A e. V )
3 eldifsn
 |-  ( k e. ( A \ { W } ) <-> ( k e. A /\ k =/= W ) )
4 1 3expb
 |-  ( ( ph /\ ( k e. A /\ k =/= W ) ) -> B = Z )
5 3 4 sylan2b
 |-  ( ( ph /\ k e. ( A \ { W } ) ) -> B = Z )
6 5 2 suppss2
 |-  ( ph -> ( ( k e. A |-> B ) supp Z ) C_ { W } )