| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							suppval | 
							 |-  ( ( X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X " { i } ) =/= { Z } } ) | 
						
						
							| 2 | 
							
								1
							 | 
							3adant1 | 
							 |-  ( ( Fun X /\ X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X " { i } ) =/= { Z } } ) | 
						
						
							| 3 | 
							
								
							 | 
							funfn | 
							 |-  ( Fun X <-> X Fn dom X )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpi | 
							 |-  ( Fun X -> X Fn dom X )  | 
						
						
							| 5 | 
							
								4
							 | 
							3ad2ant1 | 
							 |-  ( ( Fun X /\ X e. V /\ Z e. W ) -> X Fn dom X )  | 
						
						
							| 6 | 
							
								
							 | 
							fnsnfv | 
							 |-  ( ( X Fn dom X /\ i e. dom X ) -> { ( X ` i ) } = ( X " { i } ) ) | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan | 
							 |-  ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> { ( X ` i ) } = ( X " { i } ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							 |-  ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( X " { i } ) = { ( X ` i ) } ) | 
						
						
							| 9 | 
							
								8
							 | 
							neeq1d | 
							 |-  ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( ( X " { i } ) =/= { Z } <-> { ( X ` i ) } =/= { Z } ) ) | 
						
						
							| 10 | 
							
								
							 | 
							fvex | 
							 |-  ( X ` i ) e. _V  | 
						
						
							| 11 | 
							
								
							 | 
							sneqbg | 
							 |-  ( ( X ` i ) e. _V -> ( { ( X ` i ) } = { Z } <-> ( X ` i ) = Z ) ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							mp1i | 
							 |-  ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( { ( X ` i ) } = { Z } <-> ( X ` i ) = Z ) ) | 
						
						
							| 13 | 
							
								12
							 | 
							necon3bid | 
							 |-  ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( { ( X ` i ) } =/= { Z } <-> ( X ` i ) =/= Z ) ) | 
						
						
							| 14 | 
							
								9 13
							 | 
							bitrd | 
							 |-  ( ( ( Fun X /\ X e. V /\ Z e. W ) /\ i e. dom X ) -> ( ( X " { i } ) =/= { Z } <-> ( X ` i ) =/= Z ) ) | 
						
						
							| 15 | 
							
								14
							 | 
							rabbidva | 
							 |-  ( ( Fun X /\ X e. V /\ Z e. W ) -> { i e. dom X | ( X " { i } ) =/= { Z } } = { i e. dom X | ( X ` i ) =/= Z } ) | 
						
						
							| 16 | 
							
								2 15
							 | 
							eqtrd | 
							 |-  ( ( Fun X /\ X e. V /\ Z e. W ) -> ( X supp Z ) = { i e. dom X | ( X ` i ) =/= Z } ) |