Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
|- ( F Fn X -> Fun F ) |
2 |
1
|
3ad2ant1 |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> Fun F ) |
3 |
|
fnex |
|- ( ( F Fn X /\ X e. V ) -> F e. _V ) |
4 |
3
|
3adant3 |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> F e. _V ) |
5 |
|
simp3 |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> Z e. W ) |
6 |
|
suppval1 |
|- ( ( Fun F /\ F e. _V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
7 |
2 4 5 6
|
syl3anc |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
8 |
|
fndm |
|- ( F Fn X -> dom F = X ) |
9 |
8
|
3ad2ant1 |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> dom F = X ) |
10 |
9
|
rabeqdv |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> { i e. dom F | ( F ` i ) =/= Z } = { i e. X | ( F ` i ) =/= Z } ) |
11 |
7 10
|
eqtrd |
|- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |