Description: Natural deduction form of suprcl . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suprcld.2 | |- ( ph -> A C_ RR ) |
|
| suprcld.1 | |- ( ph -> A =/= (/) ) |
||
| suprcld.4 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
| Assertion | suprcld | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprcld.2 | |- ( ph -> A C_ RR ) |
|
| 2 | suprcld.1 | |- ( ph -> A =/= (/) ) |
|
| 3 | suprcld.4 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
| 4 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> sup ( A , RR , < ) e. RR ) |