Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sup3i.1 | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) | |
| Assertion | suprclii | |- sup ( A , RR , < ) e. RR | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sup3i.1 | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) | |
| 2 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) | |
| 3 | 1 2 | ax-mp | |- sup ( A , RR , < ) e. RR |