Metamath Proof Explorer


Theorem suprnub

Description: An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion suprnub
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> A. z e. A -. B < z ) )

Proof

Step Hyp Ref Expression
1 suprlub
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) )
2 1 notbid
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> -. E. z e. A B < z ) )
3 ralnex
 |-  ( A. z e. A -. B < z <-> -. E. z e. A B < z )
4 2 3 bitr4di
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> A. z e. A -. B < z ) )