Description: Natural deduction form of suprubd . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suprubd.1 | |- ( ph -> A C_ RR ) |
|
| suprubd.2 | |- ( ph -> A =/= (/) ) |
||
| suprubd.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
| suprubd.4 | |- ( ph -> B e. A ) |
||
| Assertion | suprubd | |- ( ph -> B <_ sup ( A , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprubd.1 | |- ( ph -> A C_ RR ) |
|
| 2 | suprubd.2 | |- ( ph -> A =/= (/) ) |
|
| 3 | suprubd.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
| 4 | suprubd.4 | |- ( ph -> B e. A ) |
|
| 5 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B <_ sup ( A , RR , < ) ) |
|
| 6 | 1 2 3 4 5 | syl31anc | |- ( ph -> B <_ sup ( A , RR , < ) ) |