Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sup3i.1 | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) | |
| Assertion | suprubii | |- ( B e. A -> B <_ sup ( A , RR , < ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sup3i.1 | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) | |
| 2 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B <_ sup ( A , RR , < ) ) | |
| 3 | 1 2 | mpan | |- ( B e. A -> B <_ sup ( A , RR , < ) ) |