| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							suprubrnmpt2.x | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							suprubrnmpt2.b | 
							 |-  ( ( ph /\ x e. A ) -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							suprubrnmpt2.l | 
							 |-  ( ph -> E. y e. RR A. x e. A B <_ y )  | 
						
						
							| 4 | 
							
								
							 | 
							suprubrnmpt2.c | 
							 |-  ( ph -> C e. A )  | 
						
						
							| 5 | 
							
								
							 | 
							suprubrnmpt2.d | 
							 |-  ( ph -> D e. RR )  | 
						
						
							| 6 | 
							
								
							 | 
							suprubrnmpt2.i | 
							 |-  ( x = C -> B = D )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. A |-> B ) = ( x e. A |-> B )  | 
						
						
							| 8 | 
							
								1 7 2
							 | 
							rnmptssd | 
							 |-  ( ph -> ran ( x e. A |-> B ) C_ RR )  | 
						
						
							| 9 | 
							
								7 6
							 | 
							elrnmpt1s | 
							 |-  ( ( C e. A /\ D e. RR ) -> D e. ran ( x e. A |-> B ) )  | 
						
						
							| 10 | 
							
								4 5 9
							 | 
							syl2anc | 
							 |-  ( ph -> D e. ran ( x e. A |-> B ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ne0d | 
							 |-  ( ph -> ran ( x e. A |-> B ) =/= (/) )  | 
						
						
							| 12 | 
							
								1 3
							 | 
							rnmptbdd | 
							 |-  ( ph -> E. y e. RR A. w e. ran ( x e. A |-> B ) w <_ y )  | 
						
						
							| 13 | 
							
								8 11 12 10
							 | 
							suprubd | 
							 |-  ( ph -> D <_ sup ( ran ( x e. A |-> B ) , RR , < ) )  |