Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso | |- < Or RR* |
|
2 | 1 | a1i | |- ( A C_ RR* -> < Or RR* ) |
3 | xrsupss | |- ( A C_ RR* -> E. x e. RR* ( A. y e. A -. x < y /\ A. y e. RR* ( y < x -> E. z e. A y < z ) ) ) |
|
4 | 2 3 | supcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |