Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supxrcld.1 | |- ( ph -> A C_ RR* ) |
|
Assertion | supxrcld | |- ( ph -> sup ( A , RR* , < ) e. RR* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrcld.1 | |- ( ph -> A C_ RR* ) |
|
2 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
3 | 1 2 | syl | |- ( ph -> sup ( A , RR* , < ) e. RR* ) |