Metamath Proof Explorer


Theorem supxrcld

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis supxrcld.1
|- ( ph -> A C_ RR* )
Assertion supxrcld
|- ( ph -> sup ( A , RR* , < ) e. RR* )

Proof

Step Hyp Ref Expression
1 supxrcld.1
 |-  ( ph -> A C_ RR* )
2 supxrcl
 |-  ( A C_ RR* -> sup ( A , RR* , < ) e. RR* )
3 1 2 syl
 |-  ( ph -> sup ( A , RR* , < ) e. RR* )