Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supxrcli.1 | |- A C_ RR* |
|
Assertion | supxrcli | |- sup ( A , RR* , < ) e. RR* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrcli.1 | |- A C_ RR* |
|
2 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
3 | 1 2 | ax-mp | |- sup ( A , RR* , < ) e. RR* |