Metamath Proof Explorer


Theorem supxrcli

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis supxrcli.1
|- A C_ RR*
Assertion supxrcli
|- sup ( A , RR* , < ) e. RR*

Proof

Step Hyp Ref Expression
1 supxrcli.1
 |-  A C_ RR*
2 supxrcl
 |-  ( A C_ RR* -> sup ( A , RR* , < ) e. RR* )
3 1 2 ax-mp
 |-  sup ( A , RR* , < ) e. RR*