Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | supxrcli.1 | |- A C_ RR* |
|
| Assertion | supxrcli | |- sup ( A , RR* , < ) e. RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrcli.1 | |- A C_ RR* |
|
| 2 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 3 | 1 2 | ax-mp | |- sup ( A , RR* , < ) e. RR* |