| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrbnd |
|- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) e. RR ) |
| 2 |
1
|
3expia |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) e. RR ) ) |
| 3 |
2
|
con3d |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( -. sup ( A , RR* , < ) e. RR -> -. sup ( A , RR* , < ) < +oo ) ) |
| 4 |
|
ressxr |
|- RR C_ RR* |
| 5 |
|
sstr |
|- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
| 6 |
4 5
|
mpan2 |
|- ( A C_ RR -> A C_ RR* ) |
| 7 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
| 8 |
6 7
|
syl |
|- ( A C_ RR -> sup ( A , RR* , < ) e. RR* ) |
| 9 |
8
|
adantr |
|- ( ( A C_ RR /\ A =/= (/) ) -> sup ( A , RR* , < ) e. RR* ) |
| 10 |
|
nltpnft |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 11 |
9 10
|
syl |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 12 |
3 11
|
sylibrd |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( -. sup ( A , RR* , < ) e. RR -> sup ( A , RR* , < ) = +oo ) ) |
| 13 |
12
|
orrd |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR \/ sup ( A , RR* , < ) = +oo ) ) |
| 14 |
|
mnfltxr |
|- ( ( sup ( A , RR* , < ) e. RR \/ sup ( A , RR* , < ) = +oo ) -> -oo < sup ( A , RR* , < ) ) |
| 15 |
13 14
|
syl |
|- ( ( A C_ RR /\ A =/= (/) ) -> -oo < sup ( A , RR* , < ) ) |