Step |
Hyp |
Ref |
Expression |
1 |
|
supxrlub |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( B < sup ( A , RR* , < ) <-> E. x e. A B < x ) ) |
2 |
1
|
notbid |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( -. B < sup ( A , RR* , < ) <-> -. E. x e. A B < x ) ) |
3 |
|
ralnex |
|- ( A. x e. A -. B < x <-> -. E. x e. A B < x ) |
4 |
2 3
|
bitr4di |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( -. B < sup ( A , RR* , < ) <-> A. x e. A -. B < x ) ) |
5 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
6 |
|
xrlenlt |
|- ( ( sup ( A , RR* , < ) e. RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> -. B < sup ( A , RR* , < ) ) ) |
7 |
5 6
|
sylan |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> -. B < sup ( A , RR* , < ) ) ) |
8 |
|
simpl |
|- ( ( A C_ RR* /\ B e. RR* ) -> A C_ RR* ) |
9 |
8
|
sselda |
|- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> x e. RR* ) |
10 |
|
simplr |
|- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> B e. RR* ) |
11 |
9 10
|
xrlenltd |
|- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> ( x <_ B <-> -. B < x ) ) |
12 |
11
|
ralbidva |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( A. x e. A x <_ B <-> A. x e. A -. B < x ) ) |
13 |
4 7 12
|
3bitr4d |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( sup ( A , RR* , < ) <_ B <-> A. x e. A x <_ B ) ) |