Step |
Hyp |
Ref |
Expression |
1 |
|
supxrleubrnmptf.x |
|- F/ x ph |
2 |
|
supxrleubrnmptf.a |
|- F/_ x A |
3 |
|
supxrleubrnmptf.n |
|- F/_ x C |
4 |
|
supxrleubrnmptf.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
5 |
|
supxrleubrnmptf.c |
|- ( ph -> C e. RR* ) |
6 |
|
nfcv |
|- F/_ y A |
7 |
|
nfcv |
|- F/_ y B |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
9 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
10 |
2 6 7 8 9
|
cbvmptf |
|- ( x e. A |-> B ) = ( y e. A |-> [_ y / x ]_ B ) |
11 |
10
|
rneqi |
|- ran ( x e. A |-> B ) = ran ( y e. A |-> [_ y / x ]_ B ) |
12 |
11
|
supeq1i |
|- sup ( ran ( x e. A |-> B ) , RR* , < ) = sup ( ran ( y e. A |-> [_ y / x ]_ B ) , RR* , < ) |
13 |
12
|
breq1i |
|- ( sup ( ran ( x e. A |-> B ) , RR* , < ) <_ C <-> sup ( ran ( y e. A |-> [_ y / x ]_ B ) , RR* , < ) <_ C ) |
14 |
13
|
a1i |
|- ( ph -> ( sup ( ran ( x e. A |-> B ) , RR* , < ) <_ C <-> sup ( ran ( y e. A |-> [_ y / x ]_ B ) , RR* , < ) <_ C ) ) |
15 |
|
nfv |
|- F/ y ph |
16 |
2
|
nfcri |
|- F/ x y e. A |
17 |
1 16
|
nfan |
|- F/ x ( ph /\ y e. A ) |
18 |
8
|
nfel1 |
|- F/ x [_ y / x ]_ B e. RR* |
19 |
17 18
|
nfim |
|- F/ x ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. RR* ) |
20 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
21 |
20
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. A ) <-> ( ph /\ y e. A ) ) ) |
22 |
9
|
eleq1d |
|- ( x = y -> ( B e. RR* <-> [_ y / x ]_ B e. RR* ) ) |
23 |
21 22
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. A ) -> B e. RR* ) <-> ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. RR* ) ) ) |
24 |
19 23 4
|
chvarfv |
|- ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. RR* ) |
25 |
15 24 5
|
supxrleubrnmpt |
|- ( ph -> ( sup ( ran ( y e. A |-> [_ y / x ]_ B ) , RR* , < ) <_ C <-> A. y e. A [_ y / x ]_ B <_ C ) ) |
26 |
|
nfcv |
|- F/_ x <_ |
27 |
8 26 3
|
nfbr |
|- F/ x [_ y / x ]_ B <_ C |
28 |
|
nfv |
|- F/ y B <_ C |
29 |
|
eqcom |
|- ( x = y <-> y = x ) |
30 |
29
|
imbi1i |
|- ( ( x = y -> B = [_ y / x ]_ B ) <-> ( y = x -> B = [_ y / x ]_ B ) ) |
31 |
|
eqcom |
|- ( B = [_ y / x ]_ B <-> [_ y / x ]_ B = B ) |
32 |
31
|
imbi2i |
|- ( ( y = x -> B = [_ y / x ]_ B ) <-> ( y = x -> [_ y / x ]_ B = B ) ) |
33 |
30 32
|
bitri |
|- ( ( x = y -> B = [_ y / x ]_ B ) <-> ( y = x -> [_ y / x ]_ B = B ) ) |
34 |
9 33
|
mpbi |
|- ( y = x -> [_ y / x ]_ B = B ) |
35 |
34
|
breq1d |
|- ( y = x -> ( [_ y / x ]_ B <_ C <-> B <_ C ) ) |
36 |
6 2 27 28 35
|
cbvralfw |
|- ( A. y e. A [_ y / x ]_ B <_ C <-> A. x e. A B <_ C ) |
37 |
36
|
a1i |
|- ( ph -> ( A. y e. A [_ y / x ]_ B <_ C <-> A. x e. A B <_ C ) ) |
38 |
14 25 37
|
3bitrd |
|- ( ph -> ( sup ( ran ( x e. A |-> B ) , RR* , < ) <_ C <-> A. x e. A B <_ C ) ) |