Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrlub | |- ( ( A C_ RR* /\ B e. RR* ) -> ( B < sup ( A , RR* , < ) <-> E. x e. A B < x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso | |- < Or RR* |
|
2 | 1 | a1i | |- ( A C_ RR* -> < Or RR* ) |
3 | xrsupss | |- ( A C_ RR* -> E. y e. RR* ( A. z e. A -. y < z /\ A. z e. RR* ( z < y -> E. x e. A z < x ) ) ) |
|
4 | id | |- ( A C_ RR* -> A C_ RR* ) |
|
5 | 2 3 4 | suplub2 | |- ( ( A C_ RR* /\ B e. RR* ) -> ( B < sup ( A , RR* , < ) <-> E. x e. A B < x ) ) |