| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncom |  |-  ( A u. { -oo } ) = ( { -oo } u. A ) | 
						
							| 2 | 1 | supeq1i |  |-  sup ( ( A u. { -oo } ) , RR* , < ) = sup ( ( { -oo } u. A ) , RR* , < ) | 
						
							| 3 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 4 |  | snssi |  |-  ( -oo e. RR* -> { -oo } C_ RR* ) | 
						
							| 5 | 3 4 | mp1i |  |-  ( A C_ RR* -> { -oo } C_ RR* ) | 
						
							| 6 |  | id |  |-  ( A C_ RR* -> A C_ RR* ) | 
						
							| 7 |  | xrltso |  |-  < Or RR* | 
						
							| 8 |  | supsn |  |-  ( ( < Or RR* /\ -oo e. RR* ) -> sup ( { -oo } , RR* , < ) = -oo ) | 
						
							| 9 | 7 3 8 | mp2an |  |-  sup ( { -oo } , RR* , < ) = -oo | 
						
							| 10 |  | supxrcl |  |-  ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) | 
						
							| 11 |  | mnfle |  |-  ( sup ( A , RR* , < ) e. RR* -> -oo <_ sup ( A , RR* , < ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( A C_ RR* -> -oo <_ sup ( A , RR* , < ) ) | 
						
							| 13 | 9 12 | eqbrtrid |  |-  ( A C_ RR* -> sup ( { -oo } , RR* , < ) <_ sup ( A , RR* , < ) ) | 
						
							| 14 |  | supxrun |  |-  ( ( { -oo } C_ RR* /\ A C_ RR* /\ sup ( { -oo } , RR* , < ) <_ sup ( A , RR* , < ) ) -> sup ( ( { -oo } u. A ) , RR* , < ) = sup ( A , RR* , < ) ) | 
						
							| 15 | 5 6 13 14 | syl3anc |  |-  ( A C_ RR* -> sup ( ( { -oo } u. A ) , RR* , < ) = sup ( A , RR* , < ) ) | 
						
							| 16 | 2 15 | eqtrid |  |-  ( A C_ RR* -> sup ( ( A u. { -oo } ) , RR* , < ) = sup ( A , RR* , < ) ) |