Step |
Hyp |
Ref |
Expression |
1 |
|
supxrgtmnf |
|- ( ( A C_ RR /\ A =/= (/) ) -> -oo < sup ( A , RR* , < ) ) |
2 |
|
ressxr |
|- RR C_ RR* |
3 |
|
sstr |
|- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
4 |
2 3
|
mpan2 |
|- ( A C_ RR -> A C_ RR* ) |
5 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
6 |
|
xrrebnd |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
7 |
4 5 6
|
3syl |
|- ( A C_ RR -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
8 |
7
|
adantr |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> ( -oo < sup ( A , RR* , < ) /\ sup ( A , RR* , < ) < +oo ) ) ) |
9 |
1 8
|
mpbirand |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) < +oo ) ) |