| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrre1 |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) < +oo ) ) |
| 2 |
|
ressxr |
|- RR C_ RR* |
| 3 |
|
sstr |
|- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
| 4 |
2 3
|
mpan2 |
|- ( A C_ RR -> A C_ RR* ) |
| 5 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
| 6 |
|
nltpnft |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 7 |
4 5 6
|
3syl |
|- ( A C_ RR -> ( sup ( A , RR* , < ) = +oo <-> -. sup ( A , RR* , < ) < +oo ) ) |
| 8 |
7
|
necon2abid |
|- ( A C_ RR -> ( sup ( A , RR* , < ) < +oo <-> sup ( A , RR* , < ) =/= +oo ) ) |
| 9 |
8
|
adantr |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) < +oo <-> sup ( A , RR* , < ) =/= +oo ) ) |
| 10 |
1 9
|
bitrd |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( sup ( A , RR* , < ) e. RR <-> sup ( A , RR* , < ) =/= +oo ) ) |