| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrre3rnmpt.x |
|- F/ x ph |
| 2 |
|
supxrre3rnmpt.a |
|- ( ph -> A =/= (/) ) |
| 3 |
|
supxrre3rnmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 4 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 5 |
1 4 3
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR ) |
| 6 |
1 3 4 2
|
rnmptn0 |
|- ( ph -> ran ( x e. A |-> B ) =/= (/) ) |
| 7 |
|
supxrre3 |
|- ( ( ran ( x e. A |-> B ) C_ RR /\ ran ( x e. A |-> B ) =/= (/) ) -> ( sup ( ran ( x e. A |-> B ) , RR* , < ) e. RR <-> E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ph -> ( sup ( ran ( x e. A |-> B ) , RR* , < ) e. RR <-> E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) ) |
| 9 |
1 3
|
rnmptbd |
|- ( ph -> ( E. y e. RR A. x e. A B <_ y <-> E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) ) |
| 10 |
8 9
|
bitr4d |
|- ( ph -> ( sup ( ran ( x e. A |-> B ) , RR* , < ) e. RR <-> E. y e. RR A. x e. A B <_ y ) ) |