Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
|- ( A C_ RR* -> ( z e. A -> z e. RR* ) ) |
2 |
|
pnfnlt |
|- ( z e. RR* -> -. +oo < z ) |
3 |
1 2
|
syl6 |
|- ( A C_ RR* -> ( z e. A -> -. +oo < z ) ) |
4 |
3
|
ralrimiv |
|- ( A C_ RR* -> A. z e. A -. +oo < z ) |
5 |
4
|
adantr |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A x <_ y ) -> A. z e. A -. +oo < z ) |
6 |
|
peano2re |
|- ( z e. RR -> ( z + 1 ) e. RR ) |
7 |
|
breq1 |
|- ( x = ( z + 1 ) -> ( x <_ y <-> ( z + 1 ) <_ y ) ) |
8 |
7
|
rexbidv |
|- ( x = ( z + 1 ) -> ( E. y e. A x <_ y <-> E. y e. A ( z + 1 ) <_ y ) ) |
9 |
8
|
rspcva |
|- ( ( ( z + 1 ) e. RR /\ A. x e. RR E. y e. A x <_ y ) -> E. y e. A ( z + 1 ) <_ y ) |
10 |
9
|
adantrr |
|- ( ( ( z + 1 ) e. RR /\ ( A. x e. RR E. y e. A x <_ y /\ A C_ RR* ) ) -> E. y e. A ( z + 1 ) <_ y ) |
11 |
10
|
ancoms |
|- ( ( ( A. x e. RR E. y e. A x <_ y /\ A C_ RR* ) /\ ( z + 1 ) e. RR ) -> E. y e. A ( z + 1 ) <_ y ) |
12 |
6 11
|
sylan2 |
|- ( ( ( A. x e. RR E. y e. A x <_ y /\ A C_ RR* ) /\ z e. RR ) -> E. y e. A ( z + 1 ) <_ y ) |
13 |
|
ssel2 |
|- ( ( A C_ RR* /\ y e. A ) -> y e. RR* ) |
14 |
|
ltp1 |
|- ( z e. RR -> z < ( z + 1 ) ) |
15 |
14
|
adantr |
|- ( ( z e. RR /\ y e. RR* ) -> z < ( z + 1 ) ) |
16 |
6
|
ancli |
|- ( z e. RR -> ( z e. RR /\ ( z + 1 ) e. RR ) ) |
17 |
|
rexr |
|- ( z e. RR -> z e. RR* ) |
18 |
|
rexr |
|- ( ( z + 1 ) e. RR -> ( z + 1 ) e. RR* ) |
19 |
|
xrltletr |
|- ( ( z e. RR* /\ ( z + 1 ) e. RR* /\ y e. RR* ) -> ( ( z < ( z + 1 ) /\ ( z + 1 ) <_ y ) -> z < y ) ) |
20 |
18 19
|
syl3an2 |
|- ( ( z e. RR* /\ ( z + 1 ) e. RR /\ y e. RR* ) -> ( ( z < ( z + 1 ) /\ ( z + 1 ) <_ y ) -> z < y ) ) |
21 |
17 20
|
syl3an1 |
|- ( ( z e. RR /\ ( z + 1 ) e. RR /\ y e. RR* ) -> ( ( z < ( z + 1 ) /\ ( z + 1 ) <_ y ) -> z < y ) ) |
22 |
21
|
3expa |
|- ( ( ( z e. RR /\ ( z + 1 ) e. RR ) /\ y e. RR* ) -> ( ( z < ( z + 1 ) /\ ( z + 1 ) <_ y ) -> z < y ) ) |
23 |
16 22
|
sylan |
|- ( ( z e. RR /\ y e. RR* ) -> ( ( z < ( z + 1 ) /\ ( z + 1 ) <_ y ) -> z < y ) ) |
24 |
15 23
|
mpand |
|- ( ( z e. RR /\ y e. RR* ) -> ( ( z + 1 ) <_ y -> z < y ) ) |
25 |
24
|
ancoms |
|- ( ( y e. RR* /\ z e. RR ) -> ( ( z + 1 ) <_ y -> z < y ) ) |
26 |
13 25
|
sylan |
|- ( ( ( A C_ RR* /\ y e. A ) /\ z e. RR ) -> ( ( z + 1 ) <_ y -> z < y ) ) |
27 |
26
|
an32s |
|- ( ( ( A C_ RR* /\ z e. RR ) /\ y e. A ) -> ( ( z + 1 ) <_ y -> z < y ) ) |
28 |
27
|
reximdva |
|- ( ( A C_ RR* /\ z e. RR ) -> ( E. y e. A ( z + 1 ) <_ y -> E. y e. A z < y ) ) |
29 |
28
|
adantll |
|- ( ( ( A. x e. RR E. y e. A x <_ y /\ A C_ RR* ) /\ z e. RR ) -> ( E. y e. A ( z + 1 ) <_ y -> E. y e. A z < y ) ) |
30 |
12 29
|
mpd |
|- ( ( ( A. x e. RR E. y e. A x <_ y /\ A C_ RR* ) /\ z e. RR ) -> E. y e. A z < y ) |
31 |
30
|
exp31 |
|- ( A. x e. RR E. y e. A x <_ y -> ( A C_ RR* -> ( z e. RR -> E. y e. A z < y ) ) ) |
32 |
31
|
a1dd |
|- ( A. x e. RR E. y e. A x <_ y -> ( A C_ RR* -> ( z < +oo -> ( z e. RR -> E. y e. A z < y ) ) ) ) |
33 |
32
|
com4r |
|- ( z e. RR -> ( A. x e. RR E. y e. A x <_ y -> ( A C_ RR* -> ( z < +oo -> E. y e. A z < y ) ) ) ) |
34 |
33
|
com13 |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A x <_ y -> ( z e. RR -> ( z < +oo -> E. y e. A z < y ) ) ) ) |
35 |
34
|
imp |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A x <_ y ) -> ( z e. RR -> ( z < +oo -> E. y e. A z < y ) ) ) |
36 |
35
|
ralrimiv |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A x <_ y ) -> A. z e. RR ( z < +oo -> E. y e. A z < y ) ) |
37 |
5 36
|
jca |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A x <_ y ) -> ( A. z e. A -. +oo < z /\ A. z e. RR ( z < +oo -> E. y e. A z < y ) ) ) |
38 |
|
pnfxr |
|- +oo e. RR* |
39 |
|
supxr |
|- ( ( ( A C_ RR* /\ +oo e. RR* ) /\ ( A. z e. A -. +oo < z /\ A. z e. RR ( z < +oo -> E. y e. A z < y ) ) ) -> sup ( A , RR* , < ) = +oo ) |
40 |
38 39
|
mpanl2 |
|- ( ( A C_ RR* /\ ( A. z e. A -. +oo < z /\ A. z e. RR ( z < +oo -> E. y e. A z < y ) ) ) -> sup ( A , RR* , < ) = +oo ) |
41 |
37 40
|
syldan |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A x <_ y ) -> sup ( A , RR* , < ) = +oo ) |
42 |
41
|
ex |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A x <_ y -> sup ( A , RR* , < ) = +oo ) ) |
43 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
44 |
43
|
ad2antlr |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> x e. RR* ) |
45 |
|
ltpnf |
|- ( x e. RR -> x < +oo ) |
46 |
|
breq2 |
|- ( sup ( A , RR* , < ) = +oo -> ( x < sup ( A , RR* , < ) <-> x < +oo ) ) |
47 |
45 46
|
syl5ibr |
|- ( sup ( A , RR* , < ) = +oo -> ( x e. RR -> x < sup ( A , RR* , < ) ) ) |
48 |
47
|
impcom |
|- ( ( x e. RR /\ sup ( A , RR* , < ) = +oo ) -> x < sup ( A , RR* , < ) ) |
49 |
48
|
adantll |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> x < sup ( A , RR* , < ) ) |
50 |
|
xrltso |
|- < Or RR* |
51 |
50
|
a1i |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> < Or RR* ) |
52 |
|
xrsupss |
|- ( A C_ RR* -> E. z e. RR* ( A. w e. A -. z < w /\ A. w e. RR* ( w < z -> E. y e. A w < y ) ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> E. z e. RR* ( A. w e. A -. z < w /\ A. w e. RR* ( w < z -> E. y e. A w < y ) ) ) |
54 |
51 53
|
suplub |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> ( ( x e. RR* /\ x < sup ( A , RR* , < ) ) -> E. y e. A x < y ) ) |
55 |
44 49 54
|
mp2and |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ sup ( A , RR* , < ) = +oo ) -> E. y e. A x < y ) |
56 |
55
|
ex |
|- ( ( A C_ RR* /\ x e. RR ) -> ( sup ( A , RR* , < ) = +oo -> E. y e. A x < y ) ) |
57 |
43
|
ad2antlr |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> x e. RR* ) |
58 |
13
|
adantlr |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> y e. RR* ) |
59 |
|
xrltle |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x < y -> x <_ y ) ) |
60 |
57 58 59
|
syl2anc |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> ( x < y -> x <_ y ) ) |
61 |
60
|
reximdva |
|- ( ( A C_ RR* /\ x e. RR ) -> ( E. y e. A x < y -> E. y e. A x <_ y ) ) |
62 |
56 61
|
syld |
|- ( ( A C_ RR* /\ x e. RR ) -> ( sup ( A , RR* , < ) = +oo -> E. y e. A x <_ y ) ) |
63 |
62
|
ralrimdva |
|- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo -> A. x e. RR E. y e. A x <_ y ) ) |
64 |
42 63
|
impbid |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A x <_ y <-> sup ( A , RR* , < ) = +oo ) ) |