Metamath Proof Explorer


Theorem svrelfun

Description: A single-valued relation is a function. (See fun2cnv for "single-valued.") Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion svrelfun
|- ( Fun A <-> ( Rel A /\ Fun `' `' A ) )

Proof

Step Hyp Ref Expression
1 dffun6
 |-  ( Fun A <-> ( Rel A /\ A. x E* y x A y ) )
2 fun2cnv
 |-  ( Fun `' `' A <-> A. x E* y x A y )
3 2 anbi2i
 |-  ( ( Rel A /\ Fun `' `' A ) <-> ( Rel A /\ A. x E* y x A y ) )
4 1 3 bitr4i
 |-  ( Fun A <-> ( Rel A /\ Fun `' `' A ) )