| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swoer.1 |
|- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
| 2 |
|
swoer.2 |
|- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
| 3 |
|
swoer.3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
| 4 |
|
difss |
|- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
| 5 |
1 4
|
eqsstri |
|- R C_ ( X X. X ) |
| 6 |
|
relxp |
|- Rel ( X X. X ) |
| 7 |
|
relss |
|- ( R C_ ( X X. X ) -> ( Rel ( X X. X ) -> Rel R ) ) |
| 8 |
5 6 7
|
mp2 |
|- Rel R |
| 9 |
8
|
a1i |
|- ( ph -> Rel R ) |
| 10 |
|
simpr |
|- ( ( ph /\ u R v ) -> u R v ) |
| 11 |
|
orcom |
|- ( ( u .< v \/ v .< u ) <-> ( v .< u \/ u .< v ) ) |
| 12 |
11
|
a1i |
|- ( ( ph /\ u R v ) -> ( ( u .< v \/ v .< u ) <-> ( v .< u \/ u .< v ) ) ) |
| 13 |
12
|
notbid |
|- ( ( ph /\ u R v ) -> ( -. ( u .< v \/ v .< u ) <-> -. ( v .< u \/ u .< v ) ) ) |
| 14 |
5
|
ssbri |
|- ( u R v -> u ( X X. X ) v ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ u R v ) -> u ( X X. X ) v ) |
| 16 |
|
brxp |
|- ( u ( X X. X ) v <-> ( u e. X /\ v e. X ) ) |
| 17 |
15 16
|
sylib |
|- ( ( ph /\ u R v ) -> ( u e. X /\ v e. X ) ) |
| 18 |
1
|
brdifun |
|- ( ( u e. X /\ v e. X ) -> ( u R v <-> -. ( u .< v \/ v .< u ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ u R v ) -> ( u R v <-> -. ( u .< v \/ v .< u ) ) ) |
| 20 |
17
|
simprd |
|- ( ( ph /\ u R v ) -> v e. X ) |
| 21 |
17
|
simpld |
|- ( ( ph /\ u R v ) -> u e. X ) |
| 22 |
1
|
brdifun |
|- ( ( v e. X /\ u e. X ) -> ( v R u <-> -. ( v .< u \/ u .< v ) ) ) |
| 23 |
20 21 22
|
syl2anc |
|- ( ( ph /\ u R v ) -> ( v R u <-> -. ( v .< u \/ u .< v ) ) ) |
| 24 |
13 19 23
|
3bitr4d |
|- ( ( ph /\ u R v ) -> ( u R v <-> v R u ) ) |
| 25 |
10 24
|
mpbid |
|- ( ( ph /\ u R v ) -> v R u ) |
| 26 |
|
simprl |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> u R v ) |
| 27 |
14
|
ad2antrl |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> u ( X X. X ) v ) |
| 28 |
16
|
simplbi |
|- ( u ( X X. X ) v -> u e. X ) |
| 29 |
27 28
|
syl |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> u e. X ) |
| 30 |
16
|
simprbi |
|- ( u ( X X. X ) v -> v e. X ) |
| 31 |
27 30
|
syl |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> v e. X ) |
| 32 |
29 31 18
|
syl2anc |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( u R v <-> -. ( u .< v \/ v .< u ) ) ) |
| 33 |
26 32
|
mpbid |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> -. ( u .< v \/ v .< u ) ) |
| 34 |
|
simprr |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> v R w ) |
| 35 |
5
|
brel |
|- ( v R w -> ( v e. X /\ w e. X ) ) |
| 36 |
35
|
simprd |
|- ( v R w -> w e. X ) |
| 37 |
34 36
|
syl |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> w e. X ) |
| 38 |
1
|
brdifun |
|- ( ( v e. X /\ w e. X ) -> ( v R w <-> -. ( v .< w \/ w .< v ) ) ) |
| 39 |
31 37 38
|
syl2anc |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( v R w <-> -. ( v .< w \/ w .< v ) ) ) |
| 40 |
34 39
|
mpbid |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> -. ( v .< w \/ w .< v ) ) |
| 41 |
|
simpl |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ph ) |
| 42 |
3
|
swopolem |
|- ( ( ph /\ ( u e. X /\ w e. X /\ v e. X ) ) -> ( u .< w -> ( u .< v \/ v .< w ) ) ) |
| 43 |
41 29 37 31 42
|
syl13anc |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( u .< w -> ( u .< v \/ v .< w ) ) ) |
| 44 |
3
|
swopolem |
|- ( ( ph /\ ( w e. X /\ u e. X /\ v e. X ) ) -> ( w .< u -> ( w .< v \/ v .< u ) ) ) |
| 45 |
41 37 29 31 44
|
syl13anc |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( w .< u -> ( w .< v \/ v .< u ) ) ) |
| 46 |
|
orcom |
|- ( ( v .< u \/ w .< v ) <-> ( w .< v \/ v .< u ) ) |
| 47 |
45 46
|
imbitrrdi |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( w .< u -> ( v .< u \/ w .< v ) ) ) |
| 48 |
43 47
|
orim12d |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( ( u .< w \/ w .< u ) -> ( ( u .< v \/ v .< w ) \/ ( v .< u \/ w .< v ) ) ) ) |
| 49 |
|
or4 |
|- ( ( ( u .< v \/ v .< w ) \/ ( v .< u \/ w .< v ) ) <-> ( ( u .< v \/ v .< u ) \/ ( v .< w \/ w .< v ) ) ) |
| 50 |
48 49
|
imbitrdi |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( ( u .< w \/ w .< u ) -> ( ( u .< v \/ v .< u ) \/ ( v .< w \/ w .< v ) ) ) ) |
| 51 |
33 40 50
|
mtord |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> -. ( u .< w \/ w .< u ) ) |
| 52 |
1
|
brdifun |
|- ( ( u e. X /\ w e. X ) -> ( u R w <-> -. ( u .< w \/ w .< u ) ) ) |
| 53 |
29 37 52
|
syl2anc |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> ( u R w <-> -. ( u .< w \/ w .< u ) ) ) |
| 54 |
51 53
|
mpbird |
|- ( ( ph /\ ( u R v /\ v R w ) ) -> u R w ) |
| 55 |
2 3
|
swopo |
|- ( ph -> .< Po X ) |
| 56 |
|
poirr |
|- ( ( .< Po X /\ u e. X ) -> -. u .< u ) |
| 57 |
55 56
|
sylan |
|- ( ( ph /\ u e. X ) -> -. u .< u ) |
| 58 |
|
pm1.2 |
|- ( ( u .< u \/ u .< u ) -> u .< u ) |
| 59 |
57 58
|
nsyl |
|- ( ( ph /\ u e. X ) -> -. ( u .< u \/ u .< u ) ) |
| 60 |
|
simpr |
|- ( ( ph /\ u e. X ) -> u e. X ) |
| 61 |
1
|
brdifun |
|- ( ( u e. X /\ u e. X ) -> ( u R u <-> -. ( u .< u \/ u .< u ) ) ) |
| 62 |
60 60 61
|
syl2anc |
|- ( ( ph /\ u e. X ) -> ( u R u <-> -. ( u .< u \/ u .< u ) ) ) |
| 63 |
59 62
|
mpbird |
|- ( ( ph /\ u e. X ) -> u R u ) |
| 64 |
5
|
ssbri |
|- ( u R u -> u ( X X. X ) u ) |
| 65 |
|
brxp |
|- ( u ( X X. X ) u <-> ( u e. X /\ u e. X ) ) |
| 66 |
65
|
simplbi |
|- ( u ( X X. X ) u -> u e. X ) |
| 67 |
64 66
|
syl |
|- ( u R u -> u e. X ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ u R u ) -> u e. X ) |
| 69 |
63 68
|
impbida |
|- ( ph -> ( u e. X <-> u R u ) ) |
| 70 |
9 25 54 69
|
iserd |
|- ( ph -> R Er X ) |