Step |
Hyp |
Ref |
Expression |
1 |
|
swoer.1 |
|- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
2 |
|
swoer.2 |
|- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
3 |
|
swoer.3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
4 |
|
swoord.4 |
|- ( ph -> B e. X ) |
5 |
|
swoord.5 |
|- ( ph -> C e. X ) |
6 |
|
swoord.6 |
|- ( ph -> A R B ) |
7 |
|
id |
|- ( ph -> ph ) |
8 |
|
difss |
|- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
9 |
1 8
|
eqsstri |
|- R C_ ( X X. X ) |
10 |
9
|
ssbri |
|- ( A R B -> A ( X X. X ) B ) |
11 |
|
df-br |
|- ( A ( X X. X ) B <-> <. A , B >. e. ( X X. X ) ) |
12 |
|
opelxp1 |
|- ( <. A , B >. e. ( X X. X ) -> A e. X ) |
13 |
11 12
|
sylbi |
|- ( A ( X X. X ) B -> A e. X ) |
14 |
6 10 13
|
3syl |
|- ( ph -> A e. X ) |
15 |
3
|
swopolem |
|- ( ( ph /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( A .< C -> ( A .< B \/ B .< C ) ) ) |
16 |
7 14 5 4 15
|
syl13anc |
|- ( ph -> ( A .< C -> ( A .< B \/ B .< C ) ) ) |
17 |
1
|
brdifun |
|- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
18 |
14 4 17
|
syl2anc |
|- ( ph -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
19 |
6 18
|
mpbid |
|- ( ph -> -. ( A .< B \/ B .< A ) ) |
20 |
|
orc |
|- ( A .< B -> ( A .< B \/ B .< A ) ) |
21 |
19 20
|
nsyl |
|- ( ph -> -. A .< B ) |
22 |
|
biorf |
|- ( -. A .< B -> ( B .< C <-> ( A .< B \/ B .< C ) ) ) |
23 |
21 22
|
syl |
|- ( ph -> ( B .< C <-> ( A .< B \/ B .< C ) ) ) |
24 |
16 23
|
sylibrd |
|- ( ph -> ( A .< C -> B .< C ) ) |
25 |
3
|
swopolem |
|- ( ( ph /\ ( B e. X /\ C e. X /\ A e. X ) ) -> ( B .< C -> ( B .< A \/ A .< C ) ) ) |
26 |
7 4 5 14 25
|
syl13anc |
|- ( ph -> ( B .< C -> ( B .< A \/ A .< C ) ) ) |
27 |
|
olc |
|- ( B .< A -> ( A .< B \/ B .< A ) ) |
28 |
19 27
|
nsyl |
|- ( ph -> -. B .< A ) |
29 |
|
biorf |
|- ( -. B .< A -> ( A .< C <-> ( B .< A \/ A .< C ) ) ) |
30 |
28 29
|
syl |
|- ( ph -> ( A .< C <-> ( B .< A \/ A .< C ) ) ) |
31 |
26 30
|
sylibrd |
|- ( ph -> ( B .< C -> A .< C ) ) |
32 |
24 31
|
impbid |
|- ( ph -> ( A .< C <-> B .< C ) ) |