Step |
Hyp |
Ref |
Expression |
1 |
|
swoer.1 |
|- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
2 |
|
swoer.2 |
|- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
3 |
|
swoer.3 |
|- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
4 |
|
swoord.4 |
|- ( ph -> B e. X ) |
5 |
|
swoord.5 |
|- ( ph -> C e. X ) |
6 |
|
swoord.6 |
|- ( ph -> A R B ) |
7 |
|
id |
|- ( ph -> ph ) |
8 |
|
difss |
|- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
9 |
1 8
|
eqsstri |
|- R C_ ( X X. X ) |
10 |
9
|
ssbri |
|- ( A R B -> A ( X X. X ) B ) |
11 |
|
df-br |
|- ( A ( X X. X ) B <-> <. A , B >. e. ( X X. X ) ) |
12 |
|
opelxp1 |
|- ( <. A , B >. e. ( X X. X ) -> A e. X ) |
13 |
11 12
|
sylbi |
|- ( A ( X X. X ) B -> A e. X ) |
14 |
6 10 13
|
3syl |
|- ( ph -> A e. X ) |
15 |
3
|
swopolem |
|- ( ( ph /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C .< A -> ( C .< B \/ B .< A ) ) ) |
16 |
7 5 14 4 15
|
syl13anc |
|- ( ph -> ( C .< A -> ( C .< B \/ B .< A ) ) ) |
17 |
|
idd |
|- ( ph -> ( C .< B -> C .< B ) ) |
18 |
1
|
brdifun |
|- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
19 |
14 4 18
|
syl2anc |
|- ( ph -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
20 |
6 19
|
mpbid |
|- ( ph -> -. ( A .< B \/ B .< A ) ) |
21 |
|
olc |
|- ( B .< A -> ( A .< B \/ B .< A ) ) |
22 |
20 21
|
nsyl |
|- ( ph -> -. B .< A ) |
23 |
22
|
pm2.21d |
|- ( ph -> ( B .< A -> C .< B ) ) |
24 |
17 23
|
jaod |
|- ( ph -> ( ( C .< B \/ B .< A ) -> C .< B ) ) |
25 |
16 24
|
syld |
|- ( ph -> ( C .< A -> C .< B ) ) |
26 |
3
|
swopolem |
|- ( ( ph /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( C .< B -> ( C .< A \/ A .< B ) ) ) |
27 |
7 5 4 14 26
|
syl13anc |
|- ( ph -> ( C .< B -> ( C .< A \/ A .< B ) ) ) |
28 |
|
idd |
|- ( ph -> ( C .< A -> C .< A ) ) |
29 |
|
orc |
|- ( A .< B -> ( A .< B \/ B .< A ) ) |
30 |
20 29
|
nsyl |
|- ( ph -> -. A .< B ) |
31 |
30
|
pm2.21d |
|- ( ph -> ( A .< B -> C .< A ) ) |
32 |
28 31
|
jaod |
|- ( ph -> ( ( C .< A \/ A .< B ) -> C .< A ) ) |
33 |
27 32
|
syld |
|- ( ph -> ( C .< B -> C .< A ) ) |
34 |
25 33
|
impbid |
|- ( ph -> ( C .< A <-> C .< B ) ) |