Step |
Hyp |
Ref |
Expression |
1 |
|
opelxp |
|- ( <. (/) , <. F , L >. >. e. ( _V X. ( ZZ X. ZZ ) ) <-> ( (/) e. _V /\ <. F , L >. e. ( ZZ X. ZZ ) ) ) |
2 |
|
opelxp |
|- ( <. F , L >. e. ( ZZ X. ZZ ) <-> ( F e. ZZ /\ L e. ZZ ) ) |
3 |
|
swrdval |
|- ( ( (/) e. _V /\ F e. ZZ /\ L e. ZZ ) -> ( (/) substr <. F , L >. ) = if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) ) |
4 |
|
fzonlt0 |
|- ( ( F e. ZZ /\ L e. ZZ ) -> ( -. F < L <-> ( F ..^ L ) = (/) ) ) |
5 |
4
|
biimprd |
|- ( ( F e. ZZ /\ L e. ZZ ) -> ( ( F ..^ L ) = (/) -> -. F < L ) ) |
6 |
5
|
con2d |
|- ( ( F e. ZZ /\ L e. ZZ ) -> ( F < L -> -. ( F ..^ L ) = (/) ) ) |
7 |
6
|
impcom |
|- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) = (/) ) |
8 |
|
ss0 |
|- ( ( F ..^ L ) C_ (/) -> ( F ..^ L ) = (/) ) |
9 |
7 8
|
nsyl |
|- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) C_ (/) ) |
10 |
|
dm0 |
|- dom (/) = (/) |
11 |
10
|
a1i |
|- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom (/) = (/) ) |
12 |
11
|
sseq2d |
|- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( ( F ..^ L ) C_ dom (/) <-> ( F ..^ L ) C_ (/) ) ) |
13 |
9 12
|
mtbird |
|- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) C_ dom (/) ) |
14 |
13
|
iffalsed |
|- ( ( F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
15 |
|
ssidd |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> (/) C_ (/) ) |
16 |
4
|
biimpac |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( F ..^ L ) = (/) ) |
17 |
10
|
a1i |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom (/) = (/) ) |
18 |
15 16 17
|
3sstr4d |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( F ..^ L ) C_ dom (/) ) |
19 |
18
|
iftrued |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) ) |
20 |
|
zre |
|- ( L e. ZZ -> L e. RR ) |
21 |
|
zre |
|- ( F e. ZZ -> F e. RR ) |
22 |
|
lenlt |
|- ( ( L e. RR /\ F e. RR ) -> ( L <_ F <-> -. F < L ) ) |
23 |
22
|
bicomd |
|- ( ( L e. RR /\ F e. RR ) -> ( -. F < L <-> L <_ F ) ) |
24 |
20 21 23
|
syl2anr |
|- ( ( F e. ZZ /\ L e. ZZ ) -> ( -. F < L <-> L <_ F ) ) |
25 |
|
fzo0n |
|- ( ( F e. ZZ /\ L e. ZZ ) -> ( L <_ F <-> ( 0 ..^ ( L - F ) ) = (/) ) ) |
26 |
24 25
|
bitrd |
|- ( ( F e. ZZ /\ L e. ZZ ) -> ( -. F < L <-> ( 0 ..^ ( L - F ) ) = (/) ) ) |
27 |
26
|
biimpac |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( 0 ..^ ( L - F ) ) = (/) ) |
28 |
27
|
mpteq1d |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = ( x e. (/) |-> ( (/) ` ( x + F ) ) ) ) |
29 |
28
|
dmeqd |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = dom ( x e. (/) |-> ( (/) ` ( x + F ) ) ) ) |
30 |
|
ral0 |
|- A. x e. (/) ( (/) ` ( x + F ) ) e. _V |
31 |
|
dmmptg |
|- ( A. x e. (/) ( (/) ` ( x + F ) ) e. _V -> dom ( x e. (/) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
32 |
30 31
|
mp1i |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom ( x e. (/) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
33 |
29 32
|
eqtrd |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
34 |
|
mptrel |
|- Rel ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) |
35 |
|
reldm0 |
|- ( Rel ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) -> ( ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) <-> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) ) |
36 |
34 35
|
mp1i |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) <-> dom ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) ) |
37 |
33 36
|
mpbird |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) = (/) ) |
38 |
19 37
|
eqtrd |
|- ( ( -. F < L /\ ( F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
39 |
14 38
|
pm2.61ian |
|- ( ( F e. ZZ /\ L e. ZZ ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
40 |
39
|
3adant1 |
|- ( ( (/) e. _V /\ F e. ZZ /\ L e. ZZ ) -> if ( ( F ..^ L ) C_ dom (/) , ( x e. ( 0 ..^ ( L - F ) ) |-> ( (/) ` ( x + F ) ) ) , (/) ) = (/) ) |
41 |
3 40
|
eqtrd |
|- ( ( (/) e. _V /\ F e. ZZ /\ L e. ZZ ) -> ( (/) substr <. F , L >. ) = (/) ) |
42 |
41
|
3expb |
|- ( ( (/) e. _V /\ ( F e. ZZ /\ L e. ZZ ) ) -> ( (/) substr <. F , L >. ) = (/) ) |
43 |
2 42
|
sylan2b |
|- ( ( (/) e. _V /\ <. F , L >. e. ( ZZ X. ZZ ) ) -> ( (/) substr <. F , L >. ) = (/) ) |
44 |
1 43
|
sylbi |
|- ( <. (/) , <. F , L >. >. e. ( _V X. ( ZZ X. ZZ ) ) -> ( (/) substr <. F , L >. ) = (/) ) |
45 |
|
df-substr |
|- substr = ( s e. _V , b e. ( ZZ X. ZZ ) |-> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( z e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( z + ( 1st ` b ) ) ) ) , (/) ) ) |
46 |
|
ovex |
|- ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) e. _V |
47 |
46
|
mptex |
|- ( z e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( z + ( 1st ` b ) ) ) ) e. _V |
48 |
|
0ex |
|- (/) e. _V |
49 |
47 48
|
ifex |
|- if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( z e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( z + ( 1st ` b ) ) ) ) , (/) ) e. _V |
50 |
45 49
|
dmmpo |
|- dom substr = ( _V X. ( ZZ X. ZZ ) ) |
51 |
44 50
|
eleq2s |
|- ( <. (/) , <. F , L >. >. e. dom substr -> ( (/) substr <. F , L >. ) = (/) ) |
52 |
|
df-ov |
|- ( (/) substr <. F , L >. ) = ( substr ` <. (/) , <. F , L >. >. ) |
53 |
|
ndmfv |
|- ( -. <. (/) , <. F , L >. >. e. dom substr -> ( substr ` <. (/) , <. F , L >. >. ) = (/) ) |
54 |
52 53
|
eqtrid |
|- ( -. <. (/) , <. F , L >. >. e. dom substr -> ( (/) substr <. F , L >. ) = (/) ) |
55 |
51 54
|
pm2.61i |
|- ( (/) substr <. F , L >. ) = (/) |