Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> W e. Word V ) |
2 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
3 |
|
1z |
|- 1 e. ZZ |
4 |
|
nn0z |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. ZZ ) |
5 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ ( # ` W ) e. ZZ ) -> ( 1 < ( # ` W ) <-> ( 1 + 1 ) <_ ( # ` W ) ) ) |
6 |
3 4 5
|
sylancr |
|- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) <-> ( 1 + 1 ) <_ ( # ` W ) ) ) |
7 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
8 |
7
|
a1i |
|- ( ( # ` W ) e. NN0 -> ( 1 + 1 ) = 2 ) |
9 |
8
|
breq1d |
|- ( ( # ` W ) e. NN0 -> ( ( 1 + 1 ) <_ ( # ` W ) <-> 2 <_ ( # ` W ) ) ) |
10 |
9
|
biimpd |
|- ( ( # ` W ) e. NN0 -> ( ( 1 + 1 ) <_ ( # ` W ) -> 2 <_ ( # ` W ) ) ) |
11 |
6 10
|
sylbid |
|- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) -> 2 <_ ( # ` W ) ) ) |
12 |
11
|
imp |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> 2 <_ ( # ` W ) ) |
13 |
|
2nn0 |
|- 2 e. NN0 |
14 |
13
|
jctl |
|- ( ( # ` W ) e. NN0 -> ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) ) |
15 |
14
|
adantr |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) ) |
16 |
|
nn0sub |
|- ( ( 2 e. NN0 /\ ( # ` W ) e. NN0 ) -> ( 2 <_ ( # ` W ) <-> ( ( # ` W ) - 2 ) e. NN0 ) ) |
17 |
15 16
|
syl |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( 2 <_ ( # ` W ) <-> ( ( # ` W ) - 2 ) e. NN0 ) ) |
18 |
12 17
|
mpbid |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. NN0 ) |
19 |
2 18
|
sylan |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 2 ) e. NN0 ) |
20 |
|
0red |
|- ( ( # ` W ) e. ZZ -> 0 e. RR ) |
21 |
|
1red |
|- ( ( # ` W ) e. ZZ -> 1 e. RR ) |
22 |
|
zre |
|- ( ( # ` W ) e. ZZ -> ( # ` W ) e. RR ) |
23 |
20 21 22
|
3jca |
|- ( ( # ` W ) e. ZZ -> ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) ) |
24 |
|
0lt1 |
|- 0 < 1 |
25 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) -> ( ( 0 < 1 /\ 1 < ( # ` W ) ) -> 0 < ( # ` W ) ) ) |
26 |
25
|
expd |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( # ` W ) e. RR ) -> ( 0 < 1 -> ( 1 < ( # ` W ) -> 0 < ( # ` W ) ) ) ) |
27 |
23 24 26
|
mpisyl |
|- ( ( # ` W ) e. ZZ -> ( 1 < ( # ` W ) -> 0 < ( # ` W ) ) ) |
28 |
|
elnnz |
|- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. ZZ /\ 0 < ( # ` W ) ) ) |
29 |
28
|
simplbi2 |
|- ( ( # ` W ) e. ZZ -> ( 0 < ( # ` W ) -> ( # ` W ) e. NN ) ) |
30 |
27 29
|
syld |
|- ( ( # ` W ) e. ZZ -> ( 1 < ( # ` W ) -> ( # ` W ) e. NN ) ) |
31 |
4 30
|
syl |
|- ( ( # ` W ) e. NN0 -> ( 1 < ( # ` W ) -> ( # ` W ) e. NN ) ) |
32 |
31
|
imp |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( # ` W ) e. NN ) |
33 |
|
fzo0end |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
34 |
32 33
|
syl |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
35 |
|
nn0cn |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) |
36 |
|
2cn |
|- 2 e. CC |
37 |
36
|
a1i |
|- ( ( # ` W ) e. NN0 -> 2 e. CC ) |
38 |
|
1cnd |
|- ( ( # ` W ) e. NN0 -> 1 e. CC ) |
39 |
35 37 38
|
3jca |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) ) |
40 |
|
1e2m1 |
|- 1 = ( 2 - 1 ) |
41 |
40
|
a1i |
|- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> 1 = ( 2 - 1 ) ) |
42 |
41
|
oveq2d |
|- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( # ` W ) - 1 ) = ( ( # ` W ) - ( 2 - 1 ) ) ) |
43 |
|
subsub |
|- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( # ` W ) - ( 2 - 1 ) ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
44 |
42 43
|
eqtrd |
|- ( ( ( # ` W ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( # ` W ) - 1 ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
45 |
39 44
|
syl |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
46 |
45
|
eqcomd |
|- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - 1 ) ) |
47 |
46
|
eleq1d |
|- ( ( # ` W ) e. NN0 -> ( ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
48 |
47
|
adantr |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
49 |
34 48
|
mpbird |
|- ( ( ( # ` W ) e. NN0 /\ 1 < ( # ` W ) ) -> ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
50 |
2 49
|
sylan |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
51 |
1 19 50
|
3jca |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W e. Word V /\ ( ( # ` W ) - 2 ) e. NN0 /\ ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
52 |
|
swrds2 |
|- ( ( W e. Word V /\ ( ( # ` W ) - 2 ) e. NN0 /\ ( ( ( # ` W ) - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) "> ) |
53 |
51 52
|
syl |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) "> ) |
54 |
35 36
|
jctir |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) e. CC /\ 2 e. CC ) ) |
55 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ 2 e. CC ) -> ( ( ( # ` W ) - 2 ) + 2 ) = ( # ` W ) ) |
56 |
55
|
eqcomd |
|- ( ( ( # ` W ) e. CC /\ 2 e. CC ) -> ( # ` W ) = ( ( ( # ` W ) - 2 ) + 2 ) ) |
57 |
2 54 56
|
3syl |
|- ( W e. Word V -> ( # ` W ) = ( ( ( # ` W ) - 2 ) + 2 ) ) |
58 |
57
|
adantr |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( # ` W ) = ( ( ( # ` W ) - 2 ) + 2 ) ) |
59 |
58
|
opeq2d |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> <. ( ( # ` W ) - 2 ) , ( # ` W ) >. = <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) |
60 |
59
|
oveq2d |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = ( W substr <. ( ( # ` W ) - 2 ) , ( ( ( # ` W ) - 2 ) + 2 ) >. ) ) |
61 |
|
eqidd |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W ` ( ( # ` W ) - 2 ) ) = ( W ` ( ( # ` W ) - 2 ) ) ) |
62 |
|
lsw |
|- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
63 |
39 43
|
syl |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - ( 2 - 1 ) ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
64 |
63
|
eqcomd |
|- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - ( 2 - 1 ) ) ) |
65 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
66 |
65
|
a1i |
|- ( ( # ` W ) e. NN0 -> ( 2 - 1 ) = 1 ) |
67 |
66
|
oveq2d |
|- ( ( # ` W ) e. NN0 -> ( ( # ` W ) - ( 2 - 1 ) ) = ( ( # ` W ) - 1 ) ) |
68 |
64 67
|
eqtrd |
|- ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - 1 ) ) |
69 |
2 68
|
syl |
|- ( W e. Word V -> ( ( ( # ` W ) - 2 ) + 1 ) = ( ( # ` W ) - 1 ) ) |
70 |
69
|
eqcomd |
|- ( W e. Word V -> ( ( # ` W ) - 1 ) = ( ( ( # ` W ) - 2 ) + 1 ) ) |
71 |
70
|
fveq2d |
|- ( W e. Word V -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) ) |
72 |
62 71
|
eqtrd |
|- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) ) |
73 |
72
|
adantr |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( lastS ` W ) = ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) ) |
74 |
61 73
|
s2eqd |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> = <" ( W ` ( ( # ` W ) - 2 ) ) ( W ` ( ( ( # ` W ) - 2 ) + 1 ) ) "> ) |
75 |
53 60 74
|
3eqtr4d |
|- ( ( W e. Word V /\ 1 < ( # ` W ) ) -> ( W substr <. ( ( # ` W ) - 2 ) , ( # ` W ) >. ) = <" ( W ` ( ( # ` W ) - 2 ) ) ( lastS ` W ) "> ) |