| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatin2.l |
|- L = ( # ` A ) |
| 2 |
|
lencl |
|- ( B e. Word V -> ( # ` B ) e. NN0 ) |
| 3 |
|
nn0le0eq0 |
|- ( ( # ` B ) e. NN0 -> ( ( # ` B ) <_ 0 <-> ( # ` B ) = 0 ) ) |
| 4 |
3
|
biimpd |
|- ( ( # ` B ) e. NN0 -> ( ( # ` B ) <_ 0 -> ( # ` B ) = 0 ) ) |
| 5 |
2 4
|
syl |
|- ( B e. Word V -> ( ( # ` B ) <_ 0 -> ( # ` B ) = 0 ) ) |
| 6 |
5
|
adantl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) <_ 0 -> ( # ` B ) = 0 ) ) |
| 7 |
|
hasheq0 |
|- ( B e. Word V -> ( ( # ` B ) = 0 <-> B = (/) ) ) |
| 8 |
7
|
biimpd |
|- ( B e. Word V -> ( ( # ` B ) = 0 -> B = (/) ) ) |
| 9 |
8
|
adantl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) = 0 -> B = (/) ) ) |
| 10 |
9
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) -> B = (/) ) |
| 11 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
| 12 |
1
|
eqcomi |
|- ( # ` A ) = L |
| 13 |
12
|
eleq1i |
|- ( ( # ` A ) e. NN0 <-> L e. NN0 ) |
| 14 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
| 15 |
|
elfz2nn0 |
|- ( M e. ( 0 ... ( L + 0 ) ) <-> ( M e. NN0 /\ ( L + 0 ) e. NN0 /\ M <_ ( L + 0 ) ) ) |
| 16 |
|
recn |
|- ( L e. RR -> L e. CC ) |
| 17 |
16
|
addridd |
|- ( L e. RR -> ( L + 0 ) = L ) |
| 18 |
17
|
breq2d |
|- ( L e. RR -> ( M <_ ( L + 0 ) <-> M <_ L ) ) |
| 19 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 20 |
19
|
anim1i |
|- ( ( M e. NN0 /\ L e. RR ) -> ( M e. RR /\ L e. RR ) ) |
| 21 |
20
|
ancoms |
|- ( ( L e. RR /\ M e. NN0 ) -> ( M e. RR /\ L e. RR ) ) |
| 22 |
|
letri3 |
|- ( ( M e. RR /\ L e. RR ) -> ( M = L <-> ( M <_ L /\ L <_ M ) ) ) |
| 23 |
21 22
|
syl |
|- ( ( L e. RR /\ M e. NN0 ) -> ( M = L <-> ( M <_ L /\ L <_ M ) ) ) |
| 24 |
23
|
biimprd |
|- ( ( L e. RR /\ M e. NN0 ) -> ( ( M <_ L /\ L <_ M ) -> M = L ) ) |
| 25 |
24
|
exp4b |
|- ( L e. RR -> ( M e. NN0 -> ( M <_ L -> ( L <_ M -> M = L ) ) ) ) |
| 26 |
25
|
com23 |
|- ( L e. RR -> ( M <_ L -> ( M e. NN0 -> ( L <_ M -> M = L ) ) ) ) |
| 27 |
18 26
|
sylbid |
|- ( L e. RR -> ( M <_ ( L + 0 ) -> ( M e. NN0 -> ( L <_ M -> M = L ) ) ) ) |
| 28 |
27
|
com3l |
|- ( M <_ ( L + 0 ) -> ( M e. NN0 -> ( L e. RR -> ( L <_ M -> M = L ) ) ) ) |
| 29 |
28
|
impcom |
|- ( ( M e. NN0 /\ M <_ ( L + 0 ) ) -> ( L e. RR -> ( L <_ M -> M = L ) ) ) |
| 30 |
29
|
3adant2 |
|- ( ( M e. NN0 /\ ( L + 0 ) e. NN0 /\ M <_ ( L + 0 ) ) -> ( L e. RR -> ( L <_ M -> M = L ) ) ) |
| 31 |
30
|
com12 |
|- ( L e. RR -> ( ( M e. NN0 /\ ( L + 0 ) e. NN0 /\ M <_ ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) |
| 32 |
15 31
|
biimtrid |
|- ( L e. RR -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) |
| 33 |
14 32
|
syl |
|- ( L e. NN0 -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) |
| 34 |
13 33
|
sylbi |
|- ( ( # ` A ) e. NN0 -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) |
| 35 |
11 34
|
syl |
|- ( A e. Word V -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) |
| 36 |
35
|
imp |
|- ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( L <_ M -> M = L ) ) |
| 37 |
|
elfznn0 |
|- ( M e. ( 0 ... ( L + 0 ) ) -> M e. NN0 ) |
| 38 |
|
swrd00 |
|- ( (/) substr <. 0 , 0 >. ) = (/) |
| 39 |
|
swrd00 |
|- ( A substr <. L , L >. ) = (/) |
| 40 |
38 39
|
eqtr4i |
|- ( (/) substr <. 0 , 0 >. ) = ( A substr <. L , L >. ) |
| 41 |
|
nn0cn |
|- ( L e. NN0 -> L e. CC ) |
| 42 |
41
|
subidd |
|- ( L e. NN0 -> ( L - L ) = 0 ) |
| 43 |
42
|
opeq1d |
|- ( L e. NN0 -> <. ( L - L ) , 0 >. = <. 0 , 0 >. ) |
| 44 |
43
|
oveq2d |
|- ( L e. NN0 -> ( (/) substr <. ( L - L ) , 0 >. ) = ( (/) substr <. 0 , 0 >. ) ) |
| 45 |
41
|
addridd |
|- ( L e. NN0 -> ( L + 0 ) = L ) |
| 46 |
45
|
opeq2d |
|- ( L e. NN0 -> <. L , ( L + 0 ) >. = <. L , L >. ) |
| 47 |
46
|
oveq2d |
|- ( L e. NN0 -> ( A substr <. L , ( L + 0 ) >. ) = ( A substr <. L , L >. ) ) |
| 48 |
40 44 47
|
3eqtr4a |
|- ( L e. NN0 -> ( (/) substr <. ( L - L ) , 0 >. ) = ( A substr <. L , ( L + 0 ) >. ) ) |
| 49 |
48
|
a1i |
|- ( M = L -> ( L e. NN0 -> ( (/) substr <. ( L - L ) , 0 >. ) = ( A substr <. L , ( L + 0 ) >. ) ) ) |
| 50 |
|
eleq1 |
|- ( M = L -> ( M e. NN0 <-> L e. NN0 ) ) |
| 51 |
|
oveq1 |
|- ( M = L -> ( M - L ) = ( L - L ) ) |
| 52 |
51
|
opeq1d |
|- ( M = L -> <. ( M - L ) , 0 >. = <. ( L - L ) , 0 >. ) |
| 53 |
52
|
oveq2d |
|- ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( (/) substr <. ( L - L ) , 0 >. ) ) |
| 54 |
|
opeq1 |
|- ( M = L -> <. M , ( L + 0 ) >. = <. L , ( L + 0 ) >. ) |
| 55 |
54
|
oveq2d |
|- ( M = L -> ( A substr <. M , ( L + 0 ) >. ) = ( A substr <. L , ( L + 0 ) >. ) ) |
| 56 |
53 55
|
eqeq12d |
|- ( M = L -> ( ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) <-> ( (/) substr <. ( L - L ) , 0 >. ) = ( A substr <. L , ( L + 0 ) >. ) ) ) |
| 57 |
49 50 56
|
3imtr4d |
|- ( M = L -> ( M e. NN0 -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 58 |
57
|
com12 |
|- ( M e. NN0 -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 59 |
58
|
a1d |
|- ( M e. NN0 -> ( A e. Word V -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) |
| 60 |
37 59
|
syl |
|- ( M e. ( 0 ... ( L + 0 ) ) -> ( A e. Word V -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) |
| 61 |
60
|
impcom |
|- ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 62 |
36 61
|
syld |
|- ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( L <_ M -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 63 |
62
|
imp |
|- ( ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) /\ L <_ M ) -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 64 |
|
swrdcl |
|- ( A e. Word V -> ( A substr <. M , L >. ) e. Word V ) |
| 65 |
|
ccatrid |
|- ( ( A substr <. M , L >. ) e. Word V -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , L >. ) ) |
| 66 |
64 65
|
syl |
|- ( A e. Word V -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , L >. ) ) |
| 67 |
13 41
|
sylbi |
|- ( ( # ` A ) e. NN0 -> L e. CC ) |
| 68 |
11 67
|
syl |
|- ( A e. Word V -> L e. CC ) |
| 69 |
|
addrid |
|- ( L e. CC -> ( L + 0 ) = L ) |
| 70 |
69
|
eqcomd |
|- ( L e. CC -> L = ( L + 0 ) ) |
| 71 |
68 70
|
syl |
|- ( A e. Word V -> L = ( L + 0 ) ) |
| 72 |
71
|
opeq2d |
|- ( A e. Word V -> <. M , L >. = <. M , ( L + 0 ) >. ) |
| 73 |
72
|
oveq2d |
|- ( A e. Word V -> ( A substr <. M , L >. ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 74 |
66 73
|
eqtrd |
|- ( A e. Word V -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 75 |
74
|
adantr |
|- ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 76 |
75
|
adantr |
|- ( ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) /\ -. L <_ M ) -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 77 |
63 76
|
ifeqda |
|- ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 78 |
77
|
ex |
|- ( A e. Word V -> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 79 |
78
|
ad3antrrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) /\ B = (/) ) -> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 80 |
|
oveq2 |
|- ( ( # ` B ) = 0 -> ( L + ( # ` B ) ) = ( L + 0 ) ) |
| 81 |
80
|
oveq2d |
|- ( ( # ` B ) = 0 -> ( 0 ... ( L + ( # ` B ) ) ) = ( 0 ... ( L + 0 ) ) ) |
| 82 |
81
|
eleq2d |
|- ( ( # ` B ) = 0 -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) <-> M e. ( 0 ... ( L + 0 ) ) ) ) |
| 83 |
82
|
adantr |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) <-> M e. ( 0 ... ( L + 0 ) ) ) ) |
| 84 |
|
simpr |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> B = (/) ) |
| 85 |
|
opeq2 |
|- ( ( # ` B ) = 0 -> <. ( M - L ) , ( # ` B ) >. = <. ( M - L ) , 0 >. ) |
| 86 |
85
|
adantr |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> <. ( M - L ) , ( # ` B ) >. = <. ( M - L ) , 0 >. ) |
| 87 |
84 86
|
oveq12d |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( B substr <. ( M - L ) , ( # ` B ) >. ) = ( (/) substr <. ( M - L ) , 0 >. ) ) |
| 88 |
|
oveq2 |
|- ( B = (/) -> ( ( A substr <. M , L >. ) ++ B ) = ( ( A substr <. M , L >. ) ++ (/) ) ) |
| 89 |
88
|
adantl |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( ( A substr <. M , L >. ) ++ B ) = ( ( A substr <. M , L >. ) ++ (/) ) ) |
| 90 |
87 89
|
ifeq12d |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) ) |
| 91 |
80
|
opeq2d |
|- ( ( # ` B ) = 0 -> <. M , ( L + ( # ` B ) ) >. = <. M , ( L + 0 ) >. ) |
| 92 |
91
|
oveq2d |
|- ( ( # ` B ) = 0 -> ( A substr <. M , ( L + ( # ` B ) ) >. ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 93 |
92
|
adantr |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( A substr <. M , ( L + ( # ` B ) ) >. ) = ( A substr <. M , ( L + 0 ) >. ) ) |
| 94 |
90 93
|
eqeq12d |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) <-> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) |
| 95 |
83 94
|
imbi12d |
|- ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) <-> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) |
| 96 |
95
|
adantll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) /\ B = (/) ) -> ( ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) <-> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) |
| 97 |
79 96
|
mpbird |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) /\ B = (/) ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) |
| 98 |
10 97
|
mpdan |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) |
| 99 |
98
|
ex |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) = 0 -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) |
| 100 |
6 99
|
syld |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) <_ 0 -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) |
| 101 |
100
|
com23 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) |
| 102 |
101
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) |
| 103 |
102
|
adantr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) /\ ( L + ( # ` B ) ) <_ L ) -> ( ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) |
| 104 |
1
|
eleq1i |
|- ( L e. NN0 <-> ( # ` A ) e. NN0 ) |
| 105 |
104 14
|
sylbir |
|- ( ( # ` A ) e. NN0 -> L e. RR ) |
| 106 |
11 105
|
syl |
|- ( A e. Word V -> L e. RR ) |
| 107 |
2
|
nn0red |
|- ( B e. Word V -> ( # ` B ) e. RR ) |
| 108 |
|
leaddle0 |
|- ( ( L e. RR /\ ( # ` B ) e. RR ) -> ( ( L + ( # ` B ) ) <_ L <-> ( # ` B ) <_ 0 ) ) |
| 109 |
106 107 108
|
syl2an |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( L + ( # ` B ) ) <_ L <-> ( # ` B ) <_ 0 ) ) |
| 110 |
|
pm2.24 |
|- ( ( # ` B ) <_ 0 -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) |
| 111 |
109 110
|
biimtrdi |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( L + ( # ` B ) ) <_ L -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) |
| 112 |
111
|
adantr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( L + ( # ` B ) ) <_ L -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) |
| 113 |
112
|
imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) /\ ( L + ( # ` B ) ) <_ L ) -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) |
| 114 |
103 113
|
pm2.61d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) /\ ( L + ( # ` B ) ) <_ L ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) |