Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
2 |
1
|
adantr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) -> ( A ++ B ) e. Word V ) |
3 |
|
simprl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) -> M e. ( 0 ... N ) ) |
4 |
|
ccatlen |
|- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
5 |
4
|
oveq2d |
|- ( ( A e. Word V /\ B e. Word V ) -> ( 0 ... ( # ` ( A ++ B ) ) ) = ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
6 |
5
|
eleq2d |
|- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
7 |
6
|
biimpar |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
8 |
7
|
adantrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
9 |
|
swrdvalfn |
|- ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
10 |
2 3 8 9
|
syl3anc |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |