| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( ( # ` A ) = 0 -> ( 0 ... ( # ` A ) ) = ( 0 ... 0 ) ) |
| 2 |
1
|
eleq2d |
|- ( ( # ` A ) = 0 -> ( N e. ( 0 ... ( # ` A ) ) <-> N e. ( 0 ... 0 ) ) ) |
| 3 |
|
elfz1eq |
|- ( N e. ( 0 ... 0 ) -> N = 0 ) |
| 4 |
|
elfz1eq |
|- ( M e. ( 0 ... 0 ) -> M = 0 ) |
| 5 |
|
swrd00 |
|- ( ( A ++ B ) substr <. 0 , 0 >. ) = (/) |
| 6 |
|
swrd00 |
|- ( A substr <. 0 , 0 >. ) = (/) |
| 7 |
5 6
|
eqtr4i |
|- ( ( A ++ B ) substr <. 0 , 0 >. ) = ( A substr <. 0 , 0 >. ) |
| 8 |
|
opeq1 |
|- ( M = 0 -> <. M , 0 >. = <. 0 , 0 >. ) |
| 9 |
8
|
oveq2d |
|- ( M = 0 -> ( ( A ++ B ) substr <. M , 0 >. ) = ( ( A ++ B ) substr <. 0 , 0 >. ) ) |
| 10 |
8
|
oveq2d |
|- ( M = 0 -> ( A substr <. M , 0 >. ) = ( A substr <. 0 , 0 >. ) ) |
| 11 |
7 9 10
|
3eqtr4a |
|- ( M = 0 -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) |
| 12 |
4 11
|
syl |
|- ( M e. ( 0 ... 0 ) -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) |
| 13 |
|
oveq2 |
|- ( N = 0 -> ( 0 ... N ) = ( 0 ... 0 ) ) |
| 14 |
13
|
eleq2d |
|- ( N = 0 -> ( M e. ( 0 ... N ) <-> M e. ( 0 ... 0 ) ) ) |
| 15 |
|
opeq2 |
|- ( N = 0 -> <. M , N >. = <. M , 0 >. ) |
| 16 |
15
|
oveq2d |
|- ( N = 0 -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A ++ B ) substr <. M , 0 >. ) ) |
| 17 |
15
|
oveq2d |
|- ( N = 0 -> ( A substr <. M , N >. ) = ( A substr <. M , 0 >. ) ) |
| 18 |
16 17
|
eqeq12d |
|- ( N = 0 -> ( ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) <-> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) ) |
| 19 |
14 18
|
imbi12d |
|- ( N = 0 -> ( ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) <-> ( M e. ( 0 ... 0 ) -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) ) ) |
| 20 |
12 19
|
mpbiri |
|- ( N = 0 -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 21 |
3 20
|
syl |
|- ( N e. ( 0 ... 0 ) -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 22 |
2 21
|
biimtrdi |
|- ( ( # ` A ) = 0 -> ( N e. ( 0 ... ( # ` A ) ) -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) ) |
| 23 |
22
|
impcomd |
|- ( ( # ` A ) = 0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 24 |
23
|
adantl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) = 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 25 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A ++ B ) e. Word V ) |
| 27 |
|
simprl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> M e. ( 0 ... N ) ) |
| 28 |
|
elfzelfzccat |
|- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
| 29 |
28
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( 0 ... ( # ` A ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
| 30 |
29
|
ad2ant2rl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
| 31 |
|
swrdvalfn |
|- ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 32 |
26 27 30 31
|
syl3anc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 33 |
|
3anass |
|- ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) <-> ( A e. Word V /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 34 |
33
|
simplbi2 |
|- ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 36 |
35
|
imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) |
| 37 |
|
swrdvalfn |
|- ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 38 |
36 37
|
syl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
| 39 |
|
simp-4l |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> A e. Word V ) |
| 40 |
|
simp-4r |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> B e. Word V ) |
| 41 |
|
elfznn0 |
|- ( M e. ( 0 ... N ) -> M e. NN0 ) |
| 42 |
|
nn0addcl |
|- ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) e. NN0 ) |
| 43 |
42
|
expcom |
|- ( M e. NN0 -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) |
| 44 |
41 43
|
syl |
|- ( M e. ( 0 ... N ) -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) |
| 45 |
44
|
ad2antrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) |
| 46 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ ( N - M ) ) -> k e. NN0 ) |
| 47 |
45 46
|
impel |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) e. NN0 ) |
| 48 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
| 49 |
|
elnnne0 |
|- ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ ( # ` A ) =/= 0 ) ) |
| 50 |
49
|
simplbi2 |
|- ( ( # ` A ) e. NN0 -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
| 51 |
48 50
|
syl |
|- ( A e. Word V -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
| 52 |
51
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
| 53 |
52
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( # ` A ) e. NN ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( # ` A ) e. NN ) |
| 55 |
|
elfzo0 |
|- ( k e. ( 0 ..^ ( N - M ) ) <-> ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) ) |
| 56 |
|
elfz2nn0 |
|- ( N e. ( 0 ... ( # ` A ) ) <-> ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) ) |
| 57 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 58 |
57
|
ad2antrl |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> k e. RR ) |
| 59 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 60 |
59
|
ad2antll |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> M e. RR ) |
| 61 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> N e. RR ) |
| 63 |
58 60 62
|
ltaddsubd |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( k + M ) < N <-> k < ( N - M ) ) ) |
| 64 |
|
nn0readdcl |
|- ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) e. RR ) |
| 65 |
64
|
adantl |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( k + M ) e. RR ) |
| 66 |
|
nn0re |
|- ( ( # ` A ) e. NN0 -> ( # ` A ) e. RR ) |
| 67 |
66
|
ad2antlr |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( # ` A ) e. RR ) |
| 68 |
|
ltletr |
|- ( ( ( k + M ) e. RR /\ N e. RR /\ ( # ` A ) e. RR ) -> ( ( ( k + M ) < N /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) |
| 69 |
65 62 67 68
|
syl3anc |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( ( k + M ) < N /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) |
| 70 |
69
|
expd |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( k + M ) < N -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 71 |
63 70
|
sylbird |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( k < ( N - M ) -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 72 |
71
|
ex |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k < ( N - M ) -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) ) |
| 73 |
72
|
com24 |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( N <_ ( # ` A ) -> ( k < ( N - M ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) < ( # ` A ) ) ) ) ) |
| 74 |
73
|
3impia |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k < ( N - M ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 75 |
74
|
com13 |
|- ( ( k e. NN0 /\ M e. NN0 ) -> ( k < ( N - M ) -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 76 |
75
|
impancom |
|- ( ( k e. NN0 /\ k < ( N - M ) ) -> ( M e. NN0 -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 77 |
76
|
3adant2 |
|- ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( M e. NN0 -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 78 |
77
|
com13 |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( M e. NN0 -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 79 |
56 78
|
sylbi |
|- ( N e. ( 0 ... ( # ` A ) ) -> ( M e. NN0 -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
| 80 |
41 79
|
mpan9 |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) |
| 82 |
55 81
|
biimtrid |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( k e. ( 0 ..^ ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) |
| 83 |
82
|
imp |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) < ( # ` A ) ) |
| 84 |
|
elfzo0 |
|- ( ( k + M ) e. ( 0 ..^ ( # ` A ) ) <-> ( ( k + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( k + M ) < ( # ` A ) ) ) |
| 85 |
47 54 83 84
|
syl3anbrc |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) e. ( 0 ..^ ( # ` A ) ) ) |
| 86 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( A ` ( k + M ) ) ) |
| 87 |
39 40 85 86
|
syl3anc |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( A ` ( k + M ) ) ) |
| 88 |
25
|
ad3antrrr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( A ++ B ) e. Word V ) |
| 89 |
|
simplrl |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> M e. ( 0 ... N ) ) |
| 90 |
30
|
adantr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
| 91 |
|
simpr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> k e. ( 0 ..^ ( N - M ) ) ) |
| 92 |
|
swrdfv |
|- ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) |
| 93 |
88 89 90 91 92
|
syl31anc |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) |
| 94 |
|
swrdfv |
|- ( ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A substr <. M , N >. ) ` k ) = ( A ` ( k + M ) ) ) |
| 95 |
36 94
|
sylan |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A substr <. M , N >. ) ` k ) = ( A ` ( k + M ) ) ) |
| 96 |
87 93 95
|
3eqtr4d |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A substr <. M , N >. ) ` k ) ) |
| 97 |
32 38 96
|
eqfnfvd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) |
| 98 |
97
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 99 |
24 98
|
pm2.61dane |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |