Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( ( # ` A ) = 0 -> ( 0 ... ( # ` A ) ) = ( 0 ... 0 ) ) |
2 |
1
|
eleq2d |
|- ( ( # ` A ) = 0 -> ( N e. ( 0 ... ( # ` A ) ) <-> N e. ( 0 ... 0 ) ) ) |
3 |
|
elfz1eq |
|- ( N e. ( 0 ... 0 ) -> N = 0 ) |
4 |
|
elfz1eq |
|- ( M e. ( 0 ... 0 ) -> M = 0 ) |
5 |
|
swrd00 |
|- ( ( A ++ B ) substr <. 0 , 0 >. ) = (/) |
6 |
|
swrd00 |
|- ( A substr <. 0 , 0 >. ) = (/) |
7 |
5 6
|
eqtr4i |
|- ( ( A ++ B ) substr <. 0 , 0 >. ) = ( A substr <. 0 , 0 >. ) |
8 |
|
opeq1 |
|- ( M = 0 -> <. M , 0 >. = <. 0 , 0 >. ) |
9 |
8
|
oveq2d |
|- ( M = 0 -> ( ( A ++ B ) substr <. M , 0 >. ) = ( ( A ++ B ) substr <. 0 , 0 >. ) ) |
10 |
8
|
oveq2d |
|- ( M = 0 -> ( A substr <. M , 0 >. ) = ( A substr <. 0 , 0 >. ) ) |
11 |
7 9 10
|
3eqtr4a |
|- ( M = 0 -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) |
12 |
4 11
|
syl |
|- ( M e. ( 0 ... 0 ) -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) |
13 |
|
oveq2 |
|- ( N = 0 -> ( 0 ... N ) = ( 0 ... 0 ) ) |
14 |
13
|
eleq2d |
|- ( N = 0 -> ( M e. ( 0 ... N ) <-> M e. ( 0 ... 0 ) ) ) |
15 |
|
opeq2 |
|- ( N = 0 -> <. M , N >. = <. M , 0 >. ) |
16 |
15
|
oveq2d |
|- ( N = 0 -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A ++ B ) substr <. M , 0 >. ) ) |
17 |
15
|
oveq2d |
|- ( N = 0 -> ( A substr <. M , N >. ) = ( A substr <. M , 0 >. ) ) |
18 |
16 17
|
eqeq12d |
|- ( N = 0 -> ( ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) <-> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) ) |
19 |
14 18
|
imbi12d |
|- ( N = 0 -> ( ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) <-> ( M e. ( 0 ... 0 ) -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) ) ) |
20 |
12 19
|
mpbiri |
|- ( N = 0 -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
21 |
3 20
|
syl |
|- ( N e. ( 0 ... 0 ) -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
22 |
2 21
|
syl6bi |
|- ( ( # ` A ) = 0 -> ( N e. ( 0 ... ( # ` A ) ) -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) ) |
23 |
22
|
impcomd |
|- ( ( # ` A ) = 0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
24 |
23
|
adantl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) = 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
25 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A ++ B ) e. Word V ) |
27 |
|
simprl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> M e. ( 0 ... N ) ) |
28 |
|
elfzelfzccat |
|- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
29 |
28
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( 0 ... ( # ` A ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
30 |
29
|
ad2ant2rl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
31 |
|
swrdvalfn |
|- ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
32 |
26 27 30 31
|
syl3anc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
33 |
|
3anass |
|- ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) <-> ( A e. Word V /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) |
34 |
33
|
simplbi2 |
|- ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) |
35 |
34
|
ad2antrr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) |
36 |
35
|
imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) |
37 |
|
swrdvalfn |
|- ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
38 |
36 37
|
syl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
39 |
|
simp-4l |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> A e. Word V ) |
40 |
|
simp-4r |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> B e. Word V ) |
41 |
|
elfznn0 |
|- ( M e. ( 0 ... N ) -> M e. NN0 ) |
42 |
|
nn0addcl |
|- ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) e. NN0 ) |
43 |
42
|
expcom |
|- ( M e. NN0 -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) |
44 |
41 43
|
syl |
|- ( M e. ( 0 ... N ) -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) |
45 |
44
|
ad2antrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) |
46 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ ( N - M ) ) -> k e. NN0 ) |
47 |
45 46
|
impel |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) e. NN0 ) |
48 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
49 |
|
elnnne0 |
|- ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ ( # ` A ) =/= 0 ) ) |
50 |
49
|
simplbi2 |
|- ( ( # ` A ) e. NN0 -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
51 |
48 50
|
syl |
|- ( A e. Word V -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
52 |
51
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
53 |
52
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( # ` A ) e. NN ) |
54 |
53
|
ad2antrr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( # ` A ) e. NN ) |
55 |
|
elfzo0 |
|- ( k e. ( 0 ..^ ( N - M ) ) <-> ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) ) |
56 |
|
elfz2nn0 |
|- ( N e. ( 0 ... ( # ` A ) ) <-> ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) ) |
57 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
58 |
57
|
ad2antrl |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> k e. RR ) |
59 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
60 |
59
|
ad2antll |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> M e. RR ) |
61 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
62 |
61
|
ad2antrr |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> N e. RR ) |
63 |
58 60 62
|
ltaddsubd |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( k + M ) < N <-> k < ( N - M ) ) ) |
64 |
|
nn0readdcl |
|- ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) e. RR ) |
65 |
64
|
adantl |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( k + M ) e. RR ) |
66 |
|
nn0re |
|- ( ( # ` A ) e. NN0 -> ( # ` A ) e. RR ) |
67 |
66
|
ad2antlr |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( # ` A ) e. RR ) |
68 |
|
ltletr |
|- ( ( ( k + M ) e. RR /\ N e. RR /\ ( # ` A ) e. RR ) -> ( ( ( k + M ) < N /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) |
69 |
65 62 67 68
|
syl3anc |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( ( k + M ) < N /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) |
70 |
69
|
expd |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( k + M ) < N -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) |
71 |
63 70
|
sylbird |
|- ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( k < ( N - M ) -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) |
72 |
71
|
ex |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k < ( N - M ) -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) ) |
73 |
72
|
com24 |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( N <_ ( # ` A ) -> ( k < ( N - M ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) < ( # ` A ) ) ) ) ) |
74 |
73
|
3impia |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k < ( N - M ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) < ( # ` A ) ) ) ) |
75 |
74
|
com13 |
|- ( ( k e. NN0 /\ M e. NN0 ) -> ( k < ( N - M ) -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
76 |
75
|
impancom |
|- ( ( k e. NN0 /\ k < ( N - M ) ) -> ( M e. NN0 -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
77 |
76
|
3adant2 |
|- ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( M e. NN0 -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
78 |
77
|
com13 |
|- ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( M e. NN0 -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
79 |
56 78
|
sylbi |
|- ( N e. ( 0 ... ( # ` A ) ) -> ( M e. NN0 -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) ) |
80 |
41 79
|
mpan9 |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) |
81 |
80
|
adantl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) |
82 |
55 81
|
syl5bi |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( k e. ( 0 ..^ ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) |
83 |
82
|
imp |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) < ( # ` A ) ) |
84 |
|
elfzo0 |
|- ( ( k + M ) e. ( 0 ..^ ( # ` A ) ) <-> ( ( k + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( k + M ) < ( # ` A ) ) ) |
85 |
47 54 83 84
|
syl3anbrc |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) e. ( 0 ..^ ( # ` A ) ) ) |
86 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( A ` ( k + M ) ) ) |
87 |
39 40 85 86
|
syl3anc |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( A ` ( k + M ) ) ) |
88 |
25
|
ad5ant12 |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( A ++ B ) e. Word V ) |
89 |
|
simplrl |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> M e. ( 0 ... N ) ) |
90 |
30
|
adantr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
91 |
|
simpr |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> k e. ( 0 ..^ ( N - M ) ) ) |
92 |
|
swrdfv |
|- ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) |
93 |
88 89 90 91 92
|
syl31anc |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) |
94 |
|
swrdfv |
|- ( ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A substr <. M , N >. ) ` k ) = ( A ` ( k + M ) ) ) |
95 |
36 94
|
sylan |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A substr <. M , N >. ) ` k ) = ( A ` ( k + M ) ) ) |
96 |
87 93 95
|
3eqtr4d |
|- ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A substr <. M , N >. ) ` k ) ) |
97 |
32 38 96
|
eqfnfvd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) |
98 |
97
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
99 |
24 98
|
pm2.61dane |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |