| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatind.l |
|- ( ph -> ( # ` A ) = L ) |
| 2 |
|
swrdccatind.w |
|- ( ph -> ( A e. Word V /\ B e. Word V ) ) |
| 3 |
|
swrdccatin1d.1 |
|- ( ph -> M e. ( 0 ... N ) ) |
| 4 |
|
swrdccatin1d.2 |
|- ( ph -> N e. ( 0 ... L ) ) |
| 5 |
|
oveq2 |
|- ( ( # ` A ) = L -> ( 0 ... ( # ` A ) ) = ( 0 ... L ) ) |
| 6 |
5
|
eleq2d |
|- ( ( # ` A ) = L -> ( N e. ( 0 ... ( # ` A ) ) <-> N e. ( 0 ... L ) ) ) |
| 7 |
4 6
|
imbitrrid |
|- ( ( # ` A ) = L -> ( ph -> N e. ( 0 ... ( # ` A ) ) ) ) |
| 8 |
1 7
|
mpcom |
|- ( ph -> N e. ( 0 ... ( # ` A ) ) ) |
| 9 |
3 8
|
jca |
|- ( ph -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) |
| 10 |
|
swrdccatin1 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 11 |
2 9 10
|
sylc |
|- ( ph -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) |